
Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

1

Exploring Yelp’s Treasure Trove of Data

INTRODUCTION

Yelp is a massive data aggregator of restaurant data. Founded in 2004, it now has an estimated

117 million monthly unique visitors, with over 47 million reviews of local businesses. They’re

also a major community, doing events for their community and fostering discussion within their

forum. They’re well known for providing restaurant suggestions to users to find the latest and

greatest restaurants.

We selected Yelp based on their data feature-set of restaurant reviews and reviewers. Not only

do they have a lot of restaurants, but they also have a lot of information that we can parse,

with a very rich data set of many attributes of restaurants. In particular, we were interested in

restaurants with reviews and the Yelp Elites, those in the Yelp community that possess the

following traits:

Authenticity: you are a real person and you keep things real

Contribution: more reviews the better

Connection: review other reviewers

Does acquiring the Elite status have an impact on how Yelpers rate restaurants? Is there a

measurable difference in ratings between the Yelp Elite and the general audience? Is one a

better predictor of a restaurant’s overall rating?

In addition to comparing the different types of users on Yelp, we wanted to get an

understanding of what Yelp’s data tells about restaurants in general in NYC. Do some

restaurants possess certain attributes that indicate their ratings? Can restaurateurs take action

on Yelp to possibly drive higher ratings?

DATA CAPTURE AND PROCESSING

So while Yelp has a lot of data, most of the data was locked in the site itself. Yelp provides its

own API, which has some data, but it is extraordinarily limited compared to the data on the site.

It only provides snippets of the first 3 reviews, deal information, coordinate information and

overall rating. The information is incredibly limited from the API, so the decision was made to

develop a scraper to traverse their site.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

2

Unfortunately as found out later, this is technically against Yelp’s Terms of Service. There was

also information found that indicated that Yelp very aggressively pursued scrapers and IP

banned them, so that forced us to be relatively careful, and would limit the extent of how much

data we could reasonably and reliably scrape.

This was done using python with Beautifulsoup and urllib2. Beautifulsoup is a powerful python

library that can analyze HTML and parse certain tags and their information with ease. urllib2

was used to open the sites for processing of the data, so Beautifulsoup could then strip it down

the the essential data.

To store this data, it was decided to use csv file format. CSV is a relatively easy to use, easy to

transport and easy to set up data source. While it does lack the power of a more powerful

database like SQL, the data is easier to setup, easier to manipulate, and easier to transfer

between the group.

Our idea to scrape through the site was to go to a search page, process that search page and

get all the restaurants, process all the restaurants, then go to the next page, and continue until

all the data was processed.

So first we had to quantify how we would scrape through the site. Initially we looked at doing a

blanket search for restaurant in Manhattan, but there was an issue. The maximum number of

results that Yelp would show was only up to 1000 results. That size data set would be hard to

analyze at a large scale and could prove to extremely bias our results to the best restaurants

instead of across all of Manhattan. Given this limitation, a factor was found that could better

limit the result sets.

The neighborhood filter was able to strictly define and limit the amount of restaurants

displayed to only those in that region. This would increase the number of restaurants by

sectioning off locations, then processing all the locations. In the end this resulted in a total of

around 8000 unique restaurant results.

So to iterate through all of these, for loops were used, with this URL structure.

searchurl =

"http://www.yelp.com/search?find_desc=restaurants&start=" +

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

3

str(num*10) + "&l=p:NY:New_York:Manhattan:" + searchLocation

So for example for Greenwich Village:

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manha

ttan:Greenwich_Village

Would give the first page of search results that are located within Greenwich Village.

So then the loop would iterate through, the URL would search for restaurants, start at page

num, and iterate through the list of neighborhoods (searchLocation).

searchLocations =

['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Cent

er','East_Harlem','East_Village','Financial_District','Flatiron',

'Gramercy','Greenwich_Village','Harlem','Hell\'s_Kitchen','Inwood

','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat

tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','

Midtown_West','Morningside_Heights','Murray_Hill','NoHo','Nolita'

,'Roosevelt_Island','SoHo','South_Street_Seaport','South_Village'

,'Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_

East_Side','Upper_West_Side','Washington_Heights','West_Village']

The list of searchLocations covers all of Manhattan. While the full list is slightly longer, including

Theater District and Yorkville, these were completely inside the regions of Midtown West and

Upper East Side respectively, so we deemed them redundant.

Iterating through the search results, we would find the listings, and then go through each of the

individual listings. The listings would be structured as “/biz/gotham-bar-and-grill-new-york” so

we made sure to append yelp.com to it so it would process.

"http://www.yelp.com" + listingurl

This was then a restaurants yelp page, with all the standard information.

Now that we had this, we used a standard page with multiple factors we wanted to look at to

try and understand the coding sturcture:

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:Greenwich_Village
http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:Greenwich_Village
http://www.yelp.com/biz/gotham-bar-and-grill-new-york

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

4

http://www.yelp.com/biz/gotham-bar-and-grill-new-york

Using this page and looking at the source code, multiple factors were identified and chosen to

be added to the data collection. Conveniently enough, Yelp uses significant class and id

variables which made it relatively easy for BeautifulSoup to iterate through and discover the

information we needed. To confirm the variables available, we chose a wide variety of

restaurant pages were checked to see if they had any other relevant information. With that,

some new variables were discovered and added into our scraper. After that, code was written

to take the information off the page. This information was then written to a row of a

restaurants CSV.

fr.writerow([resturl, title, latitude, longitude, rating,

reviewCount, categories, photos, URL, neighborhood, menu,

reservable, yelpDelivery, slides, sponsor, claim, eliteReviews,

transit, hours, attire, creditCards, parking, price, groups,

kids, reservations, deal, delivery, takeout, service,

outdoorSeating, wifi, meals, bestNights, happyHour, alcohol,

smoking, coatCheck, noise, goodForDancing, ambience, tv, caters,

wheelchairAccessible])

Since reviews were also listed on a restaurants page, the reviews were parsed later in the code.

The reviews segment was identified, common factors were pulled then it would be written to a

reviews CSV.

frev.writerow([resturl, eliteStatus, friendCount, reviewCount,

userPhoto, reviewInfo, reviewRating, publish, description,

reviewPix, reviewSeated, reviewDeal, reviewCheckIn, useful,

funny, cool])

We chose not to parse all the reviews and just the reviews on the initial page. This was because

the amount of time required to parse through every single page of reviews for every restaurant

(including Ippudo with 5000+ reviews!), would be immense, and would make us a bigger target

for IP ban.

Given that, we focused on two locations and worked on parsing all the data.

http://www.yelp.com/biz/gotham-bar-and-grill-new-york

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

5

Debugging

Our initial pass throughs worked, but there were some significant issues that had to be

addressed before we could use the code reliably to scrape information off of Yelp’s site.

Making sure viable restaurant data is acquired

We made sure of this by running it on multiple restaurant pages and double checking the

results. Many of the bugs were ironed out through strict checking with the data set.

Preventing errors from significantly slowing down data collection

Initially the plan was to run the code at once and parse all the information. This was eventually

seen as unviable. Any coding error or internet connection drop would invariably crash the

program which would then stop the data collection. To help mitigate this problem, the CSV files

were subdivided into their neighborhood.

filenamer = "yelpr_" + searchLocation + ".csv"

filenamerev = "yelprev_" + searchLocation + ".csv"

This then allowed for easier recovery if a crash happened and identification of stop locations,

preventing one major error from potentially complicating or corrupting the data set.

Preventing anomalies from stopping data collection

This proved to be a significant part of initial runs. Occasionally anomalies would occur out of

the blue due to semi-inconsistent pages or what seemed to be AB Testing strategies.

One of the first ones encountered was a completely new Yelp style which was extremely

frustrating to code through as the error message nor the page could indicate what was wrong.

This is when one of the first AB Tests were identified. Instead of the same structure that Yelp

restaurant pages normally used, it would occasionally become this:

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

6

This would then proceed to break and error the script. This was resolved with a try catch

statement to identify what the page looked like and its characteristics, then a if statement was

placed so that if an identifying characteristic of the alternate page was found, it would run the

function again until it switched. The occurrence of the alternate site seemed to be 1 out of 50,

so it was unreliable to find manually through the browser.

Issues after this became significantly easier to debug as they were more immediately visible.

The next issue that arose was occasionally a site with a rating, but no reviews would appear.

This was because Yelp acquired Qype, which had many reviews in alternate languages but

would not display. This was fixed through a check at the beginning of the script.

Another issue very much tied to that was that Qype lacked certain data points that the script

was searching for. This was resolved by using if statements and setting default values.

The last issue was that there was another incidence of AB testing. Instead of a massive change,

it would subtly change one of the classes my code was looking for into something else.

Fortunately, the data would error instead of giving bad data, which made detection relatively

simple. Using the try catch code again, it was relatively easy to identify the code that was

different. This happened about 1 every 15 pages.

Avoiding IP Ban

This was perhaps the biggest issue that had to be dealt with. There were at least 4 IP bans from

Yelp for scraping their site.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

7

The data processing already took a significant amount of time, with each restaurant page

scrape taking around 5 seconds, so I was under the impression that this would potentially give

enough downtime to not receive an IP ban. I was mistaken.

The first IP ban was rather sudden. After scraping for two hours, the script would throw an

error and stop immediately. After researching, it seemed that Yelp aggressively protected their

data against scraping. According to a Yelp employee, they even went as far as to completely

ban Tor since users were disproportionately using Tor to scrape Yelp.

In order to continue to collect data, I had to circumvent the IP Ban. A MAC Address clone was

used to generate new IPs and continue scraping.

Unfortunately this was found unsustainable too. Subsequently the script kept getting IP banned

faster, in about 1 hour, resulting in data collection stoppage. In addition, the sustainability of

constantly refreshing the IP was not guaranteed so a longer term solution had to be developed.

Eventually, through the built in time module of Python, sleep states were implemented into the

code. With the IPs still getting banned, the numbers had to be fairly high and were incremented

up to 1 minute per search page, 10 minutes per neighborhood and on average 5 seconds wait

per restaurant page.

With this still not working, a proxy was attempted.

import urllib2

proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'})

opener = urllib2.build_opener()

opener.addheaders = [('User-agent', 'Mozilla/5.0 (X11; Linux

i686; rv:5.0) Gecko/20100101 Firefox/5.0')]

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

8

urllib2.install_opener(opener)

While this script proved successful, when applied to Yelp, very often it would result in the home

IP being used, or the proxy being denied on Yelp, so that was not a feasible solution.

In the end though, this did help identify a key feature that was added to the code that made it

possible to run for a long time.

urllib2’s default user-agent was Python/urllib2, which was extremely easy to determine that

most likely the user was trying to scrape the site. This was incremented to Firefox and Chrome

also. While they lasted longer, the code was not able to perpetually run without getting IP

banned.

In the end, the most successful user-agent was IE9.

opener.addheaders = [('User-agent', 'IE 9/Windows: Mozilla/5.0

(compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)')]

This allowed the code to run for 20 straight hours scraping Yelp. This strategy allowed the

information to be scraped to completion.

Data Cleanup

The data was now a little unformatted and split across the various neighborhoods.

To merge the data, a script was written, concat.py, to merge all the data together. Simply it

would read through the lines and output them to a new document. This resulted in a restaurant

document with 10,000+ restaurants and 277,000+ reviews.

Restaurant sample data:

http://www.yelp.com/biz/pylos-new-york,Pylos,40.7260964,-

73.9841525,4.5,597,Greek,Has photos,pylosrestaurant.com,"['East

Village', 'Alphabet City']",Has menu,None,None,None,None,None,Has

Elites,"2 Ave. (F)

1 Ave. (L)

Astor Pl (4, 6, 6X)","Mon-Thu, Sun 5 pm - 12 am

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

9

Wed-Sun 11:30 am - 4 pm

Fri-Sat 5 pm - 1

am",Casual,Yes,Street,$$$,Yes,No,Yes,None,No,Yes,Yes,No,No,Dinner

,None,None,Beer & Wine

Only,None,None,Average,None,Romantic,No,No,Yes

Review sample data:

http://www.yelp.com/biz/pylos-new-york,None,0,9,Has photo,"East

Village, Manhattan, NY",5.0,2013-11-07,"A

Boutique...restaurants.",None,None,None,None,1,0,0

Then another script was written to sterilize the data, to make all the relevant binary into

numbers instead of their values. Using input from team members, two scripts, rsterilization.py

and revsterilization.py, were created and used to sterilize the data to a format that can easily

be used in data manipulation programs such as Tableau etc.

For the last step, the removal of duplicates, the decision was to allow Excel to do the

processing. While it is possible to write a python script to manipulate the documents and

remove duplicates, the overhead, time and difficulty to do so is excessive and there was little

information on removing duplicates quickly. So the decision was made to use Excel to expedite

the process. This then cut down the restaurants to 8,600+ and reviews to 220,000+.

One additional step then taken was to remove restaurants with under 10 reviews. The data for

restaurants with under 10 reviews was very questionable and was not nearly as accurate as it

should be. Therefore another script, g10.py, was used to remove any restaurants with less than

10 reviews. This reduced it down to 6,200+ results.

VISUALIZING RESTAURANT FEATURES

Histograms

To get a sense of the data we were working with, we plotted a few histograms in Python,

starting with ratings (see Visual 1 in Appendix). What we see is somewhat of a normally

distributed bell-curve, but with a longer left tail and a right-biased peak. People tend to be

more positive with their ratings overall but there is still some hating going, which anecdotally

makes sense. You really need to have a polarizing experience to want to rate a restaurant. Yelp

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

10

has an additional variable with the Elite factor, which will be explored later on.

Next, we plotted the frequency of restaurant’s price range. Originally, we counted all

restaurants in this plot, which showed a usually large amount of $$$$ restaurants. As we dove

deeper into the dataset, we discovered that there were hundreds of restaurants with only a

single digit count of reviews, all around East and West Harlem, which were skewing our

analysis.

Yelp apparently allows users to calculate the price range for the restaurant, if the restaurant

has not been “claimed” by the owner. To offset this, we filtered out all restaurants that had

less than 10 reviews for all future analysis. Upon filtering the data, we saw again a fairly

normally distributed histogram of restaurants by price range, with the majority of restaurants in

the $$ category (see Visual 2 in Appendix).

Identifying Significant Variables

We began our analysis with ratings as the target variable and price range as the initial

independent variable. But we quickly came to the conclusion that a restaurant’s price range

does not necessary drive ratings (see Visual 3 in Appendix). The original hypothesis arose from

the notion of confirmation bias - in order to justify spending more money for an expensive

restaurant, Yelpers would tend to rate expensive restaurants higher. While we do see that the

more expensive restaurants have slightly higher average ratings, they were not statistically

significant.

To find additional relationships within Yelp’s data, we looked for other features that were

strongly correlated to ratings. We ran a few linear regression models in Python and Minitab to

identify variables that showed stronger correlations and offer us some better visuals. Out of

the approximately 40 features for restaurants, we found three - the total count of reviews for

each restaurant, whether or not a restaurant’s Yelp page was claimed by the restaurateur and

whether or not the restaurant offered deals.

Boxplots

To look at the relationship between ratings and the count of reviews, we plotted a few boxplots

in Minitab and Python.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

11

The average count of reviews that a restaurant has is around 140. And as you can see from the

boxplot above, the number of reviews is fairly consistent across all ratings levels. However, a

greater number of restaurants with higher ratings have extreme review counts, peaking at 4.

Ippudo (a ramen restaurant) ranked first in the count of reviews at 5,381. The extreme review

counts are from destination restaurants like Katz Deli and Shake Shack. But it mirrors the

overall distribution of rating seen in the histogram.

Looking at the boxplot comparing ratings for restaurants that have been claimed by the owner

and restaurants that have not been claimed, we see claimed restaurants have an overall tighter

range in the ratings they receive with a slightly higher average. Claimed restaurants also have a

greater number of outliers.

5.04.54.03.53.02.52.01.51.0

6000

5000

4000

3000

2000

1000

0

rating

re
v

ie
w

C
o

u
n

t

Boxplot of reviewCount

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

12

Finally, looking at the boxplot of restaurants that offer deals vs. those that do not below, we

see a similar distribution of no deals to no claims, with a broad range of ratings and a average

of 3.5. However, restaurants that offer deals appear have a narrower band of opinion driving a

slightly lower rating with a large number of outliers on both sides. Further analysis would be

required to identify trends in both the positive and negative outliers.

Heatmaps

10

5

4

3

2

1

claim

ra
ti

n
g

Boxplot of rating

10

5

4

3

2

1

deal

ra
ti

n
g

Boxplot of rating

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

13

One of the variables we were interested in was whether or not higher rated restaurants were

more heavily clustered around certain locations. Does the location make the restaurant or will

people flock to wherever a good restaurant resides?

Given the cost of leasing space in New York City, neighborhoods most likely have significant

biases in terms of pricing and awareness that draws certain types of people. This is probably

one of the reasons why you won’t find many ramen joints around Columbus Circle or

Tribeca. But you will find plenty down in the East Village.

Using Tableau, we created heatmaps to plot out the location of restaurants using their geo-

coordinates captured from the Yelp data-scrape and compared the distribution of restaurants

by ratings, price, review count and Yelp page claimage.

Ratings vs. Price

We realized that for restaurant ratings, the 1 - 5 scale did not offer a lot of depth for us to

create a refined heatmap. What we saw was a blurry distributed blob of restaurants (see Visual

4 in Appendix).

We then created small multiples of the heatmap by the price category (see Visual 5 in

Appendix). We saw a similar representation of the distribution of restaurants in the histogram

of price above where the majority of restaurants fell into the $$ category.

Review Count vs. Rating

Since review count was significantly correlated to ratings, and because it had a greater range of

data, we plotted that against rating. This heatmap shows that restaurants with a 3.5 | 4 garner

the greatest number of reviews.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

14

Review Count vs. Claims and Deals

Finally, we looked at a few heatmaps that compared restaurants Claims and Deals status to

explore the distribution of review counts on a map.

As we already saw in the boxplots, we see more activity and higher ratings for restaurants that

have been claimed. But we see less activity and lower ratings for restaurants that offer deals.

The former could be due to the restaurant owners’ commitment to their establishment and

customers which ultimately manifests in Yelp’s user ratings. The latter could suggest that

restaurants that are not doing well in general are more likely to offer deals in a desperate

attempt to capture more customers.

 Not claimed Claimed

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

15

YELP ELITES

Our second area of insight we looked into was the potential relationship between Elite Status

review ratings, Non-Elite Status review ratings, average review ratings, and other user criteria.

The original impression we had was that Elite Status Yelpers were considered to be foodies and

would thus judge food more critically. Non-Elite Status Yelpers were considered to be voluntary

reviewers that had a polarizing experience at the restaurant. Thus, we believed that Elite Status

Yelp review ratings would more accurately represent the average rating of the restaurant.

Obtaining Ratings

After collecting the data from Yelp we needed a method to easily analyze the data. We decided

on using the pandas library to do the analysis. The pandas library allowed us to easily import

the data into a DataFrame and call the .describe method to give us relevant statistical

information. We primarily decided to look at the mean rather than the median since the

presence of integer values trivialized the importance of the median. In addition we decided to

plot our data using side by side box and whisker plots based on Elite Status in order to easily

compare the distribution between the two groups.

Aggregate and Group Ratings

There were a total of 48,853 entries under Elite Status and 115,915 entries under Non-Elite

Status. The mean review rating for Elite Status was 3.454273 with a standard deviation of

1.295525 and the mean review rating for Non-Elite Status was 3.475795 with a standard

 No Deals Deals Offered

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

16

deviation of 1.003664. In addition, the average review rating is 3.460654 with a standard

deviation of 1.216352 . We expected the average rating to be closer to 3.0, but this was not the

case.

Aggregate Rating Interpretation

Looking at the difference between the number of Elite Status entries and Non-Elite Status

entries did not surprise us. We knew that the Elite Status was supposed to carry some prestige

and that there would likely be more Non-Elite Status reviews. The average aggregate review

rating of 3.460654 is interesting due to its distance from 3.0. On the Yelp review scale from 1-5

one would naturally assumed that the average should be 3.0. A higher value has many

implications. One conclusion may be that the restaurants being reviewed are simply on average

better than the norm. New York City being a renowned location for food does not put this out

of the realm of possibility, however without data about other regions it is difficult to validate

this conclusion. Another conclusion may be that consumers tend to post reviews if they are

satisfied with the restaurant. This promotes the idea of the obvious volunteer bias when

looking at reviews. However, it suggests that there is a skew towards positive experiences

rather than negative experiences. The standard deviations being close to 1 show that the

distribution of ratings adheres in some capacity to the 1-5 scale. This means that the mean

review rating is not arrived at through a combination of 1s and 5s. Rather it suggests a rough

bell distribution centered around 3.460654.

Group Ratings Interpretation

The staggering similarity between the group ratings lead us to believe that there is little

difference between Elite Status Yelper reviews and Non-Elite Status Yelper reviews. A box and

whisker plot shows that the overlap between the two is very apparent 6. Our original belief that

Non-Elite Status Yelpers had relatively more polarizing views turned out to be incorrect since

the standard deviation is lower than that of Elite Status Yelpers. This suggests that there is less

variance in Non-Elite Status Yelp reviews. The similarity between these two pools of users

pointed us in the direction that the distinguishing factor between them was simply quantity. If

Non-Elite Status Yelpers match Elite Status Yelpers in their reviews, then the only difference

between the two are the number of reviews they have written. Rather than thinking about it as

Elite vs. Non-Elite it is more of an analysis into all of the review ratings on Yelp. A new user on

Yelp will on average arrive at the same rating for a restaurant that a seasoned user will. This is

important because it detracted from the notion that Elite users were foodies. In fact, users who

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

17

post reviews on Yelp are more homogenous than we had originally thought.

Dealing with Bias and Relevancy

There are a few significant instances of bias in our data’s collection and processing. We opted

not to scrape every review for a restaurant and capped the reviews for a given restaurant at 40.

This took the most recent 40 ratings, which means that the data may fail to capture changes in

management or policy. This sampling is not random and adds some bias to our method in

collecting data. The issue of volunteer bias is also ever present in reviews as people only tend to

write a review if they had a significant enough of an experience to care about. There is no real

way around this and we accept that the conclusions we draw are formed around Yelp’s

voluntary user base.

The issue of relevancy is also difficult to address due to the scope of the data. By processing the

data in an aggregate capacity we ignore what restaurants the reviews came from and instead

are looking at a review of the overall quality of restaurants in Manhattan. We can instead opt to

randomly sample restaurants that have a significant amount of Elite vs. Non-Elite reviews in

order to gain a better picture of the difference between these two groups. This method is also

prone to bias, since restaurants that have enough reviews to constitute being used are likely

going to be popular. Rarely are there any poor quality restaurants with a high amount of

reviews. Thus, our conclusions drawn are only relevant to the single restaurant in question.

Comparing Reviews for a Single Restaurant

After understanding how broad the scope was of our previous analysis, we decided to analyze a

single restaurant in order to preserve the same topic of review between an Elite and Non-Elite

review. Our randomly selected restaurant needed to have a significant amount of both Elite and

Non-Elite reviews. We ended up arriving at Silom, a Thai restaurant in Chelsea. The restaurant

had 35 Elite reviews and 73 Non-Elite reviews. The average review rating for the restaurant was

2.805556. The average Elite review rating was 2.571429 with a standard deviation of 1.092372.

The average Non-Elite review rating was 2.890411 with a standard deviation of 1.161436.

Immediately we see there is a significant difference between the two group ratings. The box

and whisker plot7 shows us that distribution of values for the two groups vary drastically. The

lower average rating from Elite reviewers coincides with our original belief in a more critical

group of users. On the other hand, the Non-Elite reviewers found Silom to be slightly better.

Interestingly enough we saw that there we no ratings of 5 from Elite reviewers for Silom.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

18

Further Improvements and Goals

The results from Silom are only an example of a single instance. While we cannot draw any

broad conclusions from it, the groundwork is laid for a more expansive forage into the Yelp

data. In order to better judge if there is a significant difference between Elite and Non-Elite

reviewers, we would expand the data scraping to encapsulate more than 40 reviews.

Furthermore, we would only select restaurants that had n>30 for both Elite and Non-Elite

reviews. From here we could look at the difference between the two group’s reviews relative to

the average restaurant rating. Conducting a hypothesis test to test whether or not there is a

significant difference between the two average ratings would then most accurately answer our

question.

We could also combine both of our insights and investigate the relevance of location and rating.

The location of a restaurant is extremely important, since Yelp users tend to review restaurants

that are easily accessible to them. Thus, an additional layer of bias arises due to a non-random

selection of Yelp users reviewing the restaurant. This relates to the possibility of restaurants in

certain areas may be more heavily reviewed by Elite users due to the demographic of the

location. Looking at the crossover between location and user demographic could lead to

interesting insights about the relationship between a restaurants rating and its area. There is

also the idea that Elite users may be bias towards reviewing higher quality restaurants. We

could investigate this by looking at the distribution of the amount of Elite reviews against the

average rating of the restaurants.

Predicting User Status

We also decided to see if there were any correlations between user review qualities and user

status. By looking at if pictures were taken, the user checked-in, and how useful, funny, or cool

the review was we attempted to predict if the user was an Elite. The first criteria we looked at

was whether or not the user incorporated pictures in their review8. We saw that on average, an

Elite user submitted 0.458672 pictures with their review while a Non-Elite user only submitted

0.163200 pictures. While the standard variation is extremely high relative to the averages, this

is understandable due to reviewers usually taking many pictures should they decide to do so.

The same was true for check-ins as well. Elite users tended to check-in at every 0.460614

locations they reviewed. On the other hand, Non-Elite users only checked-in at 0.176531

locations they reviewed. While the standard deviations were high again due to checking-in

being a binary value, it showed us that Elite users were more prone to checking in over Non-

Elite users.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

19

We also found that reviews marked as useful, funny, or cool had a higher tendency to be from

an Elite user. In all categories, an Elite user’s review on average had higher points. Elite users on

average had 1.645850 useful points, 0.860063 funny points, and 0.965838 cool points per

review. Non-Elite users on average had 1.013697 useful points, 0.443200 funny points, and

0.449872 cool points. The standard deviation values for each category were very high at

2.746813 for useful, 2.295888 for funny, and 2.156238 for cool for Elite users and 2.298212 for

useful, 1.517773 for funny, and 1.671170 for cool for Non-Elite users. This again suggests a

polarizing effect where reviews are considered very useful, funny, or cool or not at all.

Predicting Rating via Review Qualities

 The last information we looked at was whether or not there was correlation between

the characteristics of a review and the rating given9. We first looked at average rating vs.

average review pictures taken. The scatterplot shows a nice positive linear trend between the

two criteria10. This suggests that as average rating increases, average review pictures taken

increases as well. The next comparison we looked at was average rating vs. average check-in

rate11. This presented a bell-curve which led us to two possible conclusions. One was that the

relation between the two followed a bell-curve. The other was that there is no relation since

with only 5 points to look at it is possible the points are simply random. Finally, we looked at

average ratings v. total useful/funny/cool ratings. The scatterplot looked like an inverse bell-

curve12. We followed the same conclusions from our previous comparison in that it was difficult

to say if the relationship followed a true inverse bell-curve or was just random.

WHAT THIS MEANS FOR YELP

So given this data we’ve received, we can make some conclusions and perhaps suggest Yelp

down a path.

A significant finding is that it seems like there are strategies that restaurants can use to increase

their ratings, with some of the factors being important to the improvement of Yelp score.

One factor of particular important that we noticed that the regressions showed that if the Yelp

Restaurant has a deal, it is negatively correlated with their review rating. Part of Yelp's business

is to provide these deals and redirect people to them, but perhaps it needs to be understood

and perhaps tweaked so that restaurants can see real, positive results from using Yelp’s deal

system, which would help improve Yelp revenue and usage. Given that restaurants with deals

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

20

are on average worse, doesn't help the average Yelp user's perception of the restaurant.

We also believe from the statistics we found that perhaps at a larger scale at Yelp with

proprietary data, there is an opportunity for Yelp to create a consulting type of business. They

have the data necessary to potentially better mine out factors. Given our relatively limited data

set (only New York City), and the data collection limitations we had, we still were able to find

fairly significant data results that Yelp could use to help restaurants improve their score and

thusly improve their restaurants.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

21

APPENDIX

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:

Greenwich_Village

http://www.yelp.com/biz/gotham-bar-and-grill-new-york

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

22

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

23

Code

Yelp.py

1. from bs4 import BeautifulSoup
2. import urllib2
3. import csv
4. from pyparsing import Literal, quotedString, removeQuotes, delimitedList
5. import time
6. from random import randint
7.
8.
9. # Scrape restaurant information
10. def restscrape(resturl, filenamersc, filenamerevsc):
11.
12. time.sleep(randint(2,8))
13. # Read the url
14. response = urllib2.urlopen(resturl)
15. soup = BeautifulSoup(response.read())
16. response.close()
17.
18.
19. # Check if it is rated
20. if soup.find(itemprop="ratingValue") == None:
21. return
22.
23. # Anamoly
24. if soup.find(class_="container no-reviews") != None:
25. return
26.
27. # Check if it is not the alternate version
28. if soup.find(id="mapbox") != None:
29. print "alt version"
30. restscrape(resturl, filenamersc, filenamerevsc)
31. return
32.
33. # Check if it is not an alternate version
34. if soup.find(class_="friend-count miniOrange") == None:
35. print "alt version rev"
36. restscrape(resturl, filenamersc, filenamerevsc)
37. return
38.
39. #### ## ## ######## #######
40. ## ### ## ## ## ##
41. ## #### ## ## ## ##
42. ## ## ## ## ###### ## ##
43. ## ## #### ## ## ##
44. ## ## ### ## ## ##
45. #### ## ## ## #######
46.
47. # Key Yelp information
48. title = soup.find(property="og:title").get("content").encode('utf-8')
49. latitude = soup.find(property="place:location:latitude").get("content")
50. longitude = soup.find(property="place:location:longitude").get("content")
51. rating = soup.find(itemprop="ratingValue").get("content")
52. reviewCount = soup.find(itemprop="reviewCount").get_text()

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

24

53.
54. if soup.find(id="cat_display") != None:
55. categories = soup.find(id="cat_display").get_text().strip()
56. categories = ' '.join(categories.split())
57. else:
58. categories = "None"
59.
60. if soup.find(class_="photo-box-img")['src'] != "http://s3-

media1.ak.yelpcdn.com/assets/2/www/img/5f69f303f17c/default_avatars/business_medium_squ
are.png":

61. photos = "Has photos"
62. else:
63. photos = "None"
64.
65. if soup.find(id="bizUrl") != None:
66. URL = soup.find(id="bizUrl").get_text().strip().encode('utf-8')
67. else:
68. URL = "None"
69.
70. # Get Neighborhoods
71. # Particularly special code because it has to be stripped from javascript script
72. # automatically strip quotes from quoted strings
73. # quotedString matches single or double quotes
74. neighborhood = ""
75. quotedString.setParseAction(removeQuotes)
76.
77. # define a pattern to extract the neighborhoods: entry
78. neighborhoodsSpec = Literal('\"neighborhoods\":') + '[' + delimitedList(quotedStrin

g)('neighborhoods') + ']'
79.
80. for hoods in neighborhoodsSpec.searchString(soup):
81. neighborhood = str(hoods.neighborhoods)
82.
83.
84. # Yelp Interaction/Information
85. if soup.find(class_="yelp-menu") != None:
86. menu = "Has menu"
87. else:
88. menu = "None"
89.
90. if soup.find(id="opentable-reservation-actions") != None:
91. reservable = "Reservable"
92. else:
93. reservable = "None"
94.
95. if soup.find(class_="media-story offer-detail") != None:
96. deal = "Has deal"
97. else:
98. deal = "None"
99.
100. if soup.find(id="delivery-address-form") != None:
101. yelpDelivery = "Delivery system"
102. else:
103. yelpDelivery = "None"
104.
105. if soup.find(id="bizSlide") != None:
106. slides = "Has slides"
107. else:
108. slides = "None"

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

25

109.
110.
111. # Restaurant status
112. if soup.find(id="bizSupporter") != None:
113. sponsor = "Sponsors"
114. else:
115. sponsor = "None"
116.
117. if soup.find(id="bizClaim") != None:
118. claim = "Unclaimed"
119. else:
120. claim = "None"
121.
122. if soup.find(style="color:#999999;") == None:
123. eliteReviews = "Has Elites"
124. else:
125. eliteReviews = "None"
126.
127.
128. # Restaurant attributes from attributes section
129. if soup.find(class_="attr-transit") != None:
130. transit = soup.find(class_="attr-transit").get_text().strip()
131. else:
132. transit = "None"
133.
134. if soup.find(class_="attr-BusinessHours") != None:
135. hours = soup.find('dd', class_="attr-BusinessHours").get_text()
136. else:
137. hours = "None"
138.
139. if soup.find(class_="attr-RestaurantsAttire") != None:
140. attire = soup.find('dd', class_="attr-RestaurantsAttire").get_text()
141. else:
142. attire = "None"
143.
144. if soup.find(class_="attr-BusinessAcceptsCreditCards") != None:
145. creditCards = soup.find('dd', class_="attr-

BusinessAcceptsCreditCards").get_text()
146. else:
147. creditCards = "None"
148.
149. if soup.find(class_="attr-BusinessParking") != None:
150. parking = soup.find('dd', class_="attr-BusinessParking").get_text()
151. else:
152. parking = "None"
153.
154. if soup.find(class_="attr-RestaurantsPriceRange2") != None:
155. price = soup.find('dd', class_="attr-

RestaurantsPriceRange2").get_text().strip()
156. else:
157. price = "None"
158.
159. if soup.find(class_="attr-RestaurantsGoodForGroups") != None:
160. groups = soup.find('dd', class_="attr-RestaurantsGoodForGroups").get_text()
161. else:
162. groups = "None"
163.
164. if soup.find(class_="attr-GoodForKids") != None:
165. kids = soup.find('dd', class_="attr-GoodForKids").get_text()

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

26

166. else:
167. kids = "None"
168.
169. if soup.find(class_="attr-RestaurantsReservations") != None:
170. reservations = soup.find('dd', class_="attr-

RestaurantsReservations").get_text()
171. else:
172. reservations = "None"
173.
174. if soup.find(class_="attr-RestaurantsDelivery") != None:
175. delivery = soup.find('dd', class_="attr-RestaurantsDelivery").get_text()
176. else:
177. delivery = "None"
178.
179. if soup.find(class_="attr-RestaurantsTakeOut") != None:
180. takeout = soup.find('dd', class_="attr-RestaurantsTakeOut").get_text()
181. else:
182. takeout = "None"
183.
184. if soup.find(class_="attr-RestaurantsTableService") != None:
185. service = soup.find('dd', class_="attr-RestaurantsTableService").get_text()
186. else:
187. service = "None"
188.
189. if soup.find(class_="attr-OutdoorSeating") != None:
190. outdoorSeating = soup.find('dd', class_="attr-OutdoorSeating").get_text()
191. else:
192. outdoorSeating = "None"
193.
194. if soup.find(class_="attr-WiFi") != None:
195. wifi = soup.find('dd', class_="attr-WiFi").get_text()
196. else:
197. wifi = "None"
198.
199. if soup.find(class_="attr-GoodForMeal") != None:
200. meals = soup.find('dd', class_="attr-GoodForMeal").get_text()
201. else:
202. meals = "None"
203.
204. if soup.find(class_="attr-BestNights") != None:
205. bestNights = soup.find('dd', class_="attr-BestNights").get_text()
206. else:
207. bestNights = "None"
208.
209. if soup.find(class_="attr-HappyHour") != None:
210. happyHour = soup.find('dd', class_="attr-HappyHour").get_text()
211. else:
212. happyHour = "None"
213.
214. if soup.find(class_="attr-Alcohol") != None:
215. alcohol = soup.find('dd', class_="attr-Alcohol").get_text()
216. else:
217. alcohol = "None"
218.
219. if soup.find(class_="attr-Smoking") != None:
220. smoking = soup.find('dd', class_="attr-Smoking").get_text()
221. else:
222. smoking = "None"
223.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

27

224. if soup.find(class_="attr-CoatCheck") != None:
225. coatCheck = soup.find('dd', class_="attr-CoatCheck").get_text()
226. else:
227. coatCheck = "None"
228.
229. if soup.find(class_="attr-NoiseLevel") != None:
230. noise = soup.find('dd', class_="attr-NoiseLevel").get_text()
231. else:
232. noise = "None"
233.
234. if soup.find(class_="attr-GoodForDancing") != None:
235. goodForDancing = soup.find('dd', class_="attr-GoodForDancing").get_text()
236. else:
237. goodForDancing = "None"
238.
239. if soup.find(class_="attr-Ambience") != None:
240. ambience = soup.find('dd', class_="attr-Ambience").get_text()
241. else:
242. ambience = "None"
243.
244. if soup.find(class_="attr-HasTV") != None:
245. tv = soup.find('dd', class_="attr-HasTV").get_text()
246. else:
247. tv = "None"
248.
249. if soup.find(class_="attr-Caters") != None:
250. caters = soup.find('dd', class_="attr-Caters").get_text()
251. else:
252. caters = "None"
253.
254. if soup.find(class_="attr-WheelchairAccessible") != None:
255. wheelchairAccessible = soup.find('dd', class_="attr-

WheelchairAccessible").get_text()
256. else:
257. wheelchairAccessible = "None"
258.
259. if soup.find(class_="attr-DogsAllowed") != None:
260. dogsAllowed = soup.find('dd', class_="attr-DogsAllowed").get_text()
261. else:
262. dogsAllowed = "None"
263.
264.
265. with open(filenamersc, "ab") as filer:
266. fr = csv.writer(filer)
267. # Writing to CSV
268. fr.writerow([resturl, title, latitude, longitude, rating, reviewCount, categori

es, photos, URL, neighborhood, menu, reservable, yelpDelivery, slides, sponsor, claim,
eliteReviews, transit, hours, attire, creditCards, parking, price, groups, kids, reserv
ations, deal, delivery, takeout, service, outdoorSeating, wifi, meals, bestNights, happ
yHour, alcohol, smoking, coatCheck, noise, goodForDancing, ambience, tv, caters, wheelc
hairAccessible])

269.
270. ######## ######## ## ## #### ######## ## ## ######
271. ## ## ## ## ## ## ## ## ## ## ## ##
272. ## ## ## ## ## ## ## ## ## ## ##
273. ######## ###### ## ## ## ###### ## ## ## ######
274. ## ## ## ## ## ## ## ## ## ## ##
275. ## ## ## ## ## ## ## ## ## ## ## ##
276. ## ## ######## ### #### ######## ### ### ######

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

28

277.
278. # Parsing top 40 Reviews
279. reviews = soup.findAll(itemprop="review")
280. for review in reviews:
281.
282. # Get user data
283. if review.find(title="User is Elite") != None:
284. eliteStatus = "Elite"
285. else:
286. eliteStatus = "None"
287.
288. friendCount = review.find(class_="friend-count miniOrange").get_text()[:-

8].strip()
289. reviewCount = review.find(class_="review-count miniOrange").get_text()[:-

8].strip()
290.
291. if review.find(class_="photo-box-img")['src'] != "http://s3-

media4.ak.yelpcdn.com/assets/2/www/img/78074914700f/default_avatars/user_small_square.p
ng":

292. userPhoto = "Has photo"
293. else:
294. userPhoto = "None"
295.
296. reviewInfo = review.find(class_="reviewer_info").get_text().encode('utf-8')
297.
298.
299. # Get review data
300. reviewRating = review.find(itemprop="ratingValue").get("content")
301. publish = review.find(itemprop="datePublished").get("content")
302. description = review.find(itemprop="description").get_text().encode('utf-8')
303.
304.
305. # Get review attributes
306. if review.find(class_="i-wrap ig-wrap-common i-camera-common-wrap badge photo-

count") != None:
307. reviewPix = review.find(class_="i-wrap ig-wrap-common i-camera-common-

wrap badge photo-count").get_text()[:-6].strip()
308. else:
309. reviewPix = "None"
310.
311. if review.find(class_="i-wrap ig-wrap-common i-opentable-badge-common-

wrap badge opentable-badge-marker") != None:
312. reviewSeated = "Seated"
313. else:
314. reviewSeated = "None"
315.
316. if review.find(class_="i ig-common i-deal-price-tag-common") != None:
317. reviewDeal = "Purchased Deal"
318. else:
319. reviewDeal = "None"
320.
321. if review.find(class_="i-wrap ig-wrap-common i-checkin-burst-blue-small-common-

wrap badge checkin checkin-irregular") != None:
322. reviewCheckIn = review.find(class_="i-wrap ig-wrap-common i-checkin-burst-

blue-small-common-wrap badge checkin checkin-irregular").get_text()[:-14].strip()
323. else:
324. reviewCheckIn = "None"
325.
326.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

29

327. # Special Qype users lack stats
328. if review.find(class_="count"):
329. usefulfunnycool = review.findAll(class_="count")
330. # Get useful, funny, cool statistics
331. if usefulfunnycool[0].get_text() != "":
332. useful = usefulfunnycool[0].get_text()
333. else:
334. useful = 0
335.
336. if usefulfunnycool[1].get_text() != "":
337. funny = usefulfunnycool[1].get_text()
338. else:
339. funny = 0
340.
341. if usefulfunnycool[2].get_text() != "":
342. cool = usefulfunnycool[2].get_text()
343. else:
344. cool = 0
345. else:
346. useful = 0
347. funny = 0
348. cool = 0
349.
350. with open(filenamerevsc, "ab") as filerev:
351. frev = csv.writer(filerev)
352. # Writing to CSV
353. frev.writerow([resturl, eliteStatus, friendCount, reviewCount, userPhoto, r

eviewInfo, reviewRating, publish, description, reviewPix, reviewSeated, reviewDeal, rev
iewCheckIn, useful, funny, cool])

354.
355. ## ## ### #### ## ##
356. ### ### ## ## ## ### ##
357. #### #### ## ## ## #### ##
358. ## ### ## ## ## ## ## ## ##
359. ## ## ######### ## ## ####
360. ## ## ## ## ## ## ###
361. ## ## ## ## #### ## ##
362.
363. # 'Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','Ea

st_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','He
ll\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat
tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morning
side_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Sea
port','South_Village','Stuyvesant_Town','Theater_District','TriBeCa','Two_Bridges','Uni
on_Square','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village', 'Yo
rkville'

364.
365. # 'Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','Ea

st_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','He
ll\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat
tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morning
side_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Sea
port','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_E
ast_Side','Upper_West_Side','Washington_Heights','West_Village'

366.
367. # Yorkville entirely encompassed by Upper East Side
368. # Theater District entirely encompassed by Midtown West
369.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

30

370. # Unerrored:'Alphabet_City','Battery_Park','Civic_Center','East_Harlem','East_Village',
'Flatiron','Gramercy','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhatta
n_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morningsi
de_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Seapo
rt','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_Eas
t_Side','Upper_West_Side','Washington_Heights','West_Village'

371. # Errored:'Chelsea','Chinatown','Financial_District','Greenwich_Village',
372.
373. # List all the locations
374. searchLocations = ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center',

'East_Harlem','East_Village','Financial_District','Flatiron','Gramercy','Greenwich_Vill
age','Harlem','Hell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_E
ast_Side','Manhattan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midto
wn_West','Morningside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo',
'South_Street_Seaport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union
_Square','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village']

375.
376. # proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'})
377. # opener = urllib2.build_opener(proxy)
378. # opener.addheaders = [('User-

agent', 'Mozilla/5.0 (X11; Linux i686; rv:5.0) Gecko/20100101 Firefox/5.0')]
379. # urllib2.install_opener(opener)
380.
381. opener = urllib2.build_opener()
382. opener.addheaders = [('User-

agent', 'IE 9/Windows: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Triden
t/5.0)')]

383. urllib2.install_opener(opener)
384.
385. # Iterate through
386. for searchLocation in searchLocations:
387. # Print for reference
388. print searchLocation
389. filenamer = "yelpr_" + searchLocation + ".csv"
390. filenamerev = "yelprev_" + searchLocation + ".csv"
391.
392. # File setup
393. with open(filenamer, "ab") as filer:
394. fr = csv.writer(filer)
395. # Write reference row
396. fr.writerow(['resturl', 'title', 'latitude', 'longitude', 'rating', 'reviewCoun

t', 'categories', 'photos', 'URL', 'neighborhood', 'menu', 'reservable', 'yelpDelivery'
, 'slides', 'sponsor', 'claim', 'eliteReviews', 'transit', 'hours', 'attire', 'creditCa
rds', 'parking', 'price', 'groups', 'kids', 'reservations', 'deal', 'delivery', 'takeou
t', 'service', 'outdoorSeating', 'wifi', 'meals', 'bestNights', 'happyHour', 'alcohol',
 'smoking', 'coatCheck', 'noise', 'goodForDancing', 'ambience', 'tv', 'caters', 'wheelc
hairAccessible'])

397.
398. with open(filenamerev, "ab") as filerev:
399. frev = csv.writer(filerev)
400. # Write reference row
401. frev.writerow(['resturl', 'eliteStatus', 'friendCount', 'reviewCount', 'userPho

to', 'reviewInfo', 'reviewRating', 'publish', 'description', 'reviewPix', 'reviewSeated
', 'reviewDeal', 'reviewCheckIn', 'useful', 'funny', 'cool'])

402.
403. # Build number to iterate search #
404. for num in range(0,100):
405.
406. print num

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

31

407. # Build URL
408. searchurl = "http://www.yelp.com/search?find_desc=restaurants&start=" + str(num

*10) + "&l=p:NY:New_York:Manhattan:" + searchLocation
409.
410. # Read URL
411. responseMain = urllib2.urlopen(searchurl)
412. soupMain = BeautifulSoup(responseMain.read())
413. responseMain.close()
414.
415. # If there are no more entries, break out of the loop and go to the next search

Location
416. if soupMain.find(class_="broaden-search-suggestions") != None:
417. break
418.
419. # Otherwise get listings
420. listings = soupMain.find_all(class_="search-result natural-search-result biz-

listing-large")
421. listingurls = []
422.
423. # Iterate through listings
424. for listing in listings:
425.
426. # Check if no ratings
427. if listing.find(class_="biz-rating biz-rating-large clearfix") != None:
428. # Pull the url if it has ratings and add to list
429. listingurls.append(listing.find('a')['href'])
430.
431. # Then get the url list
432. for listingurl in listingurls:
433.
434. print listingurl
435. # Then use scrapers on the urls
436. restscrape(str("http://www.yelp.com" + listingurl), filenamer, filenamerev)

437.
438. time.sleep(60)
439.
440. time.sleep(600)

proxytest.py

1. import urllib2
2.
3. # proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'})
4. opener = urllib2.build_opener()
5. opener.addheaders = [('User-

agent', 'Mozilla/5.0 (X11; Linux i686; rv:5.0) Gecko/20100101 Firefox/5.0')]
6. urllib2.install_opener(opener)
7.
8. my_ip = urllib2.urlopen('http://whatthehellismyip.com/?ipraw').read()
9. my_ua = urllib2.urlopen('http://whatsmyua.com/').read()[750:900]
10. print my_ip
11. print my_ua

Concat.py

1. # ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','E

ast_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','H

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

32

ell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manha
ttan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Mornin
gside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Se
aport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_
East_Side','Upper_West_Side','Washington_Heights','West_Village']

2.
3. locations = ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_

Harlem','East_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','
Harlem','Hell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Si
de','Manhattan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_Wes
t','Morningside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South
_Street_Seaport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Squar
e','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village']

4.
5. frout=open("allr.csv","ab")
6. frevout=open("allrev.csv","ab")
7. # first file:
8. for line in open("yelpr_"+locations[0]+".csv"):
9. frout.write(line)
10.
11. for line in open("yelprev_"+locations[0]+".csv"):
12. frevout.write(line)
13.
14. # now the rest:
15. for num in range(1,len(locations)):
16.
17. fr = open("yelpr_"+locations[num]+".csv")
18. fr.next() # skip the header
19. for line in fr:
20. frout.write(line)
21.
22. fr.close()
23.
24. frev = open("yelprev_"+locations[num]+".csv")
25. frev.next() # skip the header
26. for line in frev:
27. frevout.write(line)
28.
29. frev.close()
30.
31. frout.close()
32. frevout.close()

rsterilization.py

1. import csv
2. inputFileName = "allr.csv"
3. outputFileName = "allr_edited.csv"
4.
5. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:
6. r = csv.reader(infile)
7. w = csv.writer(outfile)
8. w.writerow(next(r)) # Writes the header unchanged
9. for row in r:
10. if row[7] == "None":
11. row[7] = 0
12. else:
13. row[7] = 1
14.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

33

15. if row[8] == "None":
16. row[8] = 0
17. else:
18. row[8] = 1
19.
20. if row[10] == "None":
21. row[10] = 0
22. else:
23. row[10] = 1
24.
25. if row[11] == "None":
26. row[11] = 0
27. else:
28. row[11] = 1
29.
30. if row[12] == "None":
31. row[12] = 0
32. else:
33. row[12] = 1
34.
35. if row[13] == "None":
36. row[13] = 0
37. else:
38. row[13] = 1
39.
40. if row[14] == "None":
41. row[14] = 0
42. else:
43. row[14] = 1
44.
45. if row[15] == "None":
46. row[15] = 1
47. else:
48. row[15] = 0
49.
50. if row[16] == "None":
51. row[16] = 0
52. else:
53. row[16] = 1
54.
55. if row[17] == "None":
56. row[17] = 0
57. else:
58. row[17] = 1
59.
60. if row[18] == "None":
61. row[18] = 0
62. else:
63. row[18] = 1
64.
65. if row[19] == "Dressy":
66. row[19] = 1
67. else:
68. row[19] = 0
69.
70. if row[20] == "Yes":
71. row[20] = 1
72. else:
73. row[20] = 0

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

34

74.
75. if row[21] == "None" or row[21] == "Street":
76. row[21] = 0
77. else:
78. row[21] = 1
79.
80. row[22] = len(row[22].strip())
81.
82. if row[23] == "Yes":
83. row[23] = 1
84. else:
85. row[23] = 0
86.
87. if row[24] == "Yes":
88. row[24] = 1
89. else:
90. row[24] = 0
91.
92. if row[25] == "Yes":
93. row[25] = 1
94. else:
95. row[25] = 0
96.
97. if row[26] == "Has deal":
98. row[26] = 1
99. else:
100. row[26] = 0
101.
102. if row[27] == "Yes":
103. row[27] = 1
104. else:
105. row[27] = 0
106.
107. if row[28] == "Yes":
108. row[28] = 1
109. else:
110. row[28] = 0
111.
112. if row[29] == "Yes":
113. row[29] = 1
114. else:
115. row[29] = 0
116.
117. if row[30] == "Yes":
118. row[30] = 1
119. else:
120. row[30] = 0
121.
122. if row[31] == "Free":
123. row[31] = 1
124. else:
125. row[31] = 0
126.
127. if row[34] == "Yes":
128. row[34] = 1
129. else:
130. row[34] = 0
131.
132. if row[35] == "Full Bar":

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

35

133. row[35] = 2
134. elif row[35] == "Beer & Wine Only":
135. row[35] = 1
136. else:
137. row[35] = 0
138.
139. if row[36] == "Yes":
140. row[36] = 2
141. elif row[36] == "Outdoor Area/ Patio Only":
142. row[36] = 1
143. else:
144. row[36] = 0
145.
146. if row[37] == "Yes":
147. row[37] = 1
148. else:
149. row[37] = 0
150.
151. if row[38] == "Very Loud" or row[38] == "Loud":
152. row[38] = 2
153. elif row[38] == "Average":
154. row[38] = 1
155. else:
156. row[38] = 0
157.
158. if row[39] == "Yes":
159. row[39] = 1
160. else:
161. row[39] = 0
162.
163. if row[41] == "Yes":
164. row[41] = 1
165. else:
166. row[41] = 0
167.
168. if row[42] == "Yes":
169. row[42] = 1
170. else:
171. row[42] = 0
172.
173. if row[43] == "Yes":
174. row[43] = 1
175. else:
176. row[43] = 0
177. w.writerow(row)

revsterilization.py

1. import csv
2. inputFileName = "allrev.csv"
3. outputFileName = "allrev_edited.csv"
4.
5. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:
6. r = csv.reader(infile)
7. w = csv.writer(outfile)
8. w.writerow(next(r)) # Writes the header unchanged
9. for row in r:
10. if row[1] == "Elite":
11. row[1] = 1

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

36

12. else:
13. row[1] = 0
14.
15. if row[4] == "None":
16. row[4] = 0
17. else:
18. row[4] = 1
19.
20. if row[9] == "None":
21. row[9] = 0
22.
23. if row[10] == "None":
24. row[10] = 0
25. else:
26. row[10] = 1
27.
28. if row[11] == "None":
29. row[11] = 0
30. else:
31. row[11] = 1
32.
33. if row[12] == "None":
34. row[12] = 0
35. else:
36. row[12] = 1
37.
38. w.writerow(row)

g10.py

1. # To only keep restaurants with greater than 10 reviews.
2. import csv
3. inputFileName = "allr_edited_deduped.csv"
4. outputFileName = "allr_edited_deduped_g10.csv"
5.
6. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:
7. r = csv.reader(infile)
8. w = csv.writer(outfile)
9. w.writerow(next(r)) # Writes the header unchanged
10. for row in r:
11. if int(row[5]) >= 10:
12. w.writerow(row)

Jung iPython Notebook

1. In [95]:
2.
3. #histogram of ratings
4.
5. %matplotlib inline
6. import matplotlib.pyplot as plt
7. import csv
8.
9. ratings_count = {"1": 0,
10. "1.5": 0,
11. "2": 0,
12. "2.5": 0,

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

37

13. "3": 0,
14. "3.5": 0,
15. "4": 0,
16. "4.5": 0,
17. "5": 0}
18.
19. infile = open('allr_edited_deduped_g10.csv', "rb")
20. reader = csv.reader(infile)
21.
22. reader.next()
23. for row in reader:
24. ratings = row[4]
25. ratings_count[ratings] = ratings_count[ratings] + 1
26.
27. infile.close()
28.
29. ratings_index = {"1": 0,
30. "1.5": 1,
31. "2": 2,
32. "2.5": 3,
33. "3": 4,
34. "3.5": 5,
35. "4": 6,
36. "4.5": 7,
37. "5": 8}
38.
39. ratings_arr = [0, 0, 0, 0, 0, 0, 0, 0, 0]
40.
41. keys = range(9)
42. for key, value in ratings_count.iteritems():
43. index = ratings_index[key]
44. ratings_arr[index] = value
45.
46. plt.bar(keys,ratings_arr,color='b')
47. plt.show()
48.
49. In [97]:
50.
51. #histogram of price
52.
53. price_count = {"1": 0,
54. "2": 0,
55. "3": 0,
56. "4": 0}
57.
58. infile = open('allr_edited_deduped_g10.csv', "rb")
59. reader = csv.reader(infile)
60.
61. reader.next()
62. for row in reader:
63. price = row[22]
64. price_count[price] = price_count[price] + 1
65.
66. infile.close()
67.
68. price_index = {"1": 0,
69. "2": 1,
70. "3": 2,
71. "4": 3}

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

38

72.
73. price_arr = [0, 0, 0, 0]
74.
75. keys = range(4)
76. for key, value in price_count.iteritems():
77. index = price_index[key]
78. price_arr[index] = value
79.
80. plt.bar(keys,price_arr,color='r')
81. plt.show()
82.
83. In [88]:
84.
85. #attempt at a cluster chart
86.
87. import csv
88. import numpy as np
89. from pylab import plot,show
90. from numpy import vstack,array
91. from numpy.random import rand
92. from scipy.cluster.vq import kmeans,vq
93.
94. infile = open('allr_edited_deduped.csv', "rb")
95. reader = csv.reader(infile)
96. #data = vstack((rand(150,2) + array([.5,.5]),rand(150,2)))
97.
98. ratings_list = []
99. for row in reader:
100. ratings = int(float(row[4]))
101. price = int(float(row[22]))
102.
103. ratings_list.append([ratings,price])
104. #p = np.asarray(ratings, price)
105.
106. p = vstack(ratings_list)
107.
108. # computing K-Means with K = 3 (3 clusters)
109. centroids,_ = kmeans(p,3)
110. # assign each sample to a cluster
111. idx,_ = vq(p,centroids)
112.
113. # some plotting using numpy's logical indexing
114. plot(p[idx==0,0],p[idx==0,1],'ob',
115. p[idx==1,0],p[idx==1,1],'or',
116. p[idx==2,0],p[idx==2,1],'og')
117. plot(centroids[:,0],centroids[:,1],centroids[:,2],'sg',markersize=8)
118. show()
119.
120. ---
121. IndexError Traceback (most recent call last)
122. <ipython-input-88-ae7c317bbd18> in <module>()
123. 26
124. 27 # some plotting using numpy's logical indexing
125. ---> 28 plot(p[idx==0,0],p[idx==0,2],'ob',
126. 29 p[idx==1,0],p[idx==1,2],'or',
127. 30 p[idx==2,0],p[idx==2,2],'og')
128.
129. IndexError: index 2 is out of bounds for axis 1 with size 2
130.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

39

131. In [75]:
132.
133. #attempt at a boxplot
134.
135. from pylab import *
136.
137. # fake up some data
138. spread= rand(50) * 100
139. center = ones(25) * 50
140. flier_high = rand(10) * 100 + 100
141. flier_low = rand(10) * -100
142. data =concatenate((spread, center, flier_high, flier_low), 0)
143.
144. print data
145.
146.
147. # fake up some more data
148. spread= rand(50) * 100
149. center = ones(25) * 40
150. flier_high = rand(10) * 100 + 100
151. flier_low = rand(10) * -100
152. d2 = concatenate((spread, center, flier_high, flier_low), 0)
153. data.shape = (-1, 1)
154. d2.shape = (-1, 1)
155. #data = concatenate((data, d2), 1)
156. # Making a 2-D array only works if all the columns are the
157. # same length. If they are not, then use a list instead.
158. # This is actually more efficient because boxplot converts
159. # a 2-D array into a list of vectors internally anyway.
160. data = [data, d2, d2[::2,0]]
161.
162.
163. # multiple box plots on one figure
164. figure()
165. boxplot(data)
166.
167. show()
168.
169. [63.79546152 19.65157435 32.63003327 91.97750172 65.06890263
170. 11.1174677 82.57265482 52.26190629 26.91672317 15.63198348
171. 65.97502866 67.39583805 37.99084017 9.6420859 94.18799126
172. 29.10139972 40.51556865 4.85790462 3.85263129 32.84172293
173. 86.47713579 5.64763582 86.39398244 65.73331889 40.97693479
174. 21.35507367 64.49553411 49.17026711 30.12449077 2.0095419
175. 67.27264579 29.99458345 99.13562905 49.78354538 3.77188196
176. 82.74870614 38.22563021 34.53909834 50.66782223 50.21074449
177. 78.08356527 94.25060163 62.16788951 19.04474011 90.68360956
178. 45.49576673 7.40531061 51.75721172 15.75123556 96.81151693
179. 50. 50. 50. 50. 50. 50.
180. 50. 50. 50. 50. 50. 50.
181. 50. 50. 50. 50. 50. 50.
182. 50. 50. 50. 50. 50. 50.
183. 50. 114.23848175 137.16782724 149.83022405 129.36547062
184. 102.91117314 158.70471456 131.81505752 113.28382836 137.40310604
185. 148.56522517 -38.85887058 -72.52140826 -31.64348736 -6.45848084
186. -67.5212848 -25.16578098 -23.60681635 -92.05346249 -92.60459022
187. -15.02384999]
188.
189. In [107]:

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

40

190.
191. #linear regression for review count
192.
193. from scipy import stats
194.
195. infile = open('allr_edited_deduped_g10.csv', "rb")
196. reader = csv.reader(infile)
197.
198. ratings_list = []
199. reviews_list = []
200. reader.next()
201. for row in reader:
202. ratings = int(float(row[4]))
203. reviewcount = int(float(row[5]))
204.
205. ratings_list.append(ratings)
206. reviews_list.append(reviewcount)
207.
208. slope, intercept, r_value, p_value, std_err = stats.linregress(reviews_list,ratings_lis

t)
209.
210. print "P-value", p_value #significant
211. print "R-squared", r_value**2
212. print "Slope", slope
213.
214. P-value 7.97070891518e-57
215. R-squared 0.0397748655747
216. Slope 0.00052694268763
217.
218. In [108]:
219.
220. #linear regression for price
221.
222. from scipy import stats
223.
224. infile = open('allr_edited_deduped_g10.csv', "rb")
225. reader = csv.reader(infile)
226.
227. ratings_list = []
228. price_list = []
229. reader.next()
230. for row in reader:
231. ratings = int(float(row[4]))
232. price = int(float(row[22]))
233.
234. ratings_list.append(ratings)
235. price_list.append(price)
236.
237. slope, intercept, r_value, p_value, std_err = stats.linregress(price_list,ratings_list)

238.
239. print "P-value", p_value #significant
240. print "R-squared", r_value**2
241. print "Slope", slope
242.
243. P-value 3.55606573266e-12
244. R-squared 0.00774710286578
245. Slope 0.0689953657474
246.

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

41

247. In [111]:
248.
249. #linear regression for claims
250.
251. from scipy import stats
252.
253. infile = open('allr_edited_deduped_g10.csv', "rb")
254. reader = csv.reader(infile)
255.
256. ratings_list = []
257. claim_list = []
258. reader.next()
259. for row in reader:
260. ratings = int(float(row[4]))
261. claim = int(float(row[15]))
262.
263. ratings_list.append(ratings)
264. claim_list.append(claim)
265.
266. slope, intercept, r_value, p_value, std_err = stats.linregress(claim_list,ratings_list)

267.
268. print "P-value", p_value #significant
269. print "R-squared", r_value**2
270. print "Slope", slope
271.
272. P-value 7.19556603492e-33
273. R-squared 0.0226739762926
274. Slope 0.190908992096
275.
276. In [112]:
277.
278. #linear regression for deals
279.
280. from scipy import stats
281.
282. infile = open('allr_edited_deduped_g10.csv', "rb")
283. reader = csv.reader(infile)
284.
285. ratings_list = []
286. deal_list = []
287. reader.next()
288. for row in reader:
289. ratings = int(float(row[4]))
290. deal = int(float(row[26]))
291.
292. ratings_list.append(ratings)
293. deal_list.append(deal)
294.
295. slope, intercept, r_value, p_value, std_err = stats.linregress(deal_list,ratings_list)

296.
297. print "P-value", p_value #significant
298. print "R-squared", r_value**2
299. print "Slope", slope
300.
301. P-value 1.50657558112e-17
302. R-squared 0.0116252818137
303. Slope -0.147325808319

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

42

.ipynb file

JungIPYNBWork.ipynb

yelpinsight.py

1. import matplotlib.pyplot as plt
2. import pandas as pd
3.
4. df=pd.read_csv('allrev_edited_deduped.csv', sep="[,\s]*")
5. df
6. g=df.describe()
7. pd.set_option('display.max_columns',7)
8. g
9. print df
10. print g.to_string()
11. plt.figure();
12. bp = df.boxplot(column=['funny'],by =['eliteStatus'])
13. plt.show();

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

43

Visualizations

Histogram of ratings distribution (Visual 1)

Histogram of price range (Visual 2)

Average ratings by price range (Visual 3)

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

44

Boxplot of ratings and price range

Boxplot of review count and price

4321

5

4

3

2

1

price

ra
ti

n
g

Boxplot of rating

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

45

Heatmap of ratings (Visual 4)

Heatmap of ratings by price range (Visual 5)

4321

6000

5000

4000

3000

2000

1000

0

price

re
v

ie
w

C
o

u
n

t

Boxplot of reviewCount

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

46

Heatmap File

Heatmaps.twb

Appendix 6

$ python insight4.py

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

47

<class 'pandas.core.frame.DataFrame'>
Int64Index: 222268 entries, 0 to 222267
Data columns (total 2 columns):
eliteStatus 222268 non-null values
reviewRating 222268 non-null values
dtypes: int64(2)
 eliteStatus reviewRating
eliteStatus
0 count 158425 158425.000000
 mean 0 3.459309
 std 0 1.296230
 min 0 1.000000
 25% 0 3.000000
 50% 0 4.000000
 75% 0 4.000000
 max 0 5.000000
1 count 63843 63843.000000
 mean 1 3.485879
 std 0 1.003300
 min 1 1.000000
 25% 1 3.000000
 50% 1 4.000000
 75% 1 4.000000
 max 1 5.000000

Appendix 7

<class 'pandas.core.frame.DataFrame'>
Int64Index: 108 entries, 0 to 107
Data columns (total 3 columns):
resturl 108 non-null values
eliteStatus 108 non-null values
reviewRating 108 non-null values
dtypes: int64(2), object(1)
 eliteStatus reviewRating
eliteStatus

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

48

0 count 73 73.000000
 mean 0 2.890411
 std 0 1.161436
 min 0 1.000000
 25% 0 2.000000
 50% 0 3.000000
 75% 0 4.000000
 max 0 5.000000
1 count 35 35.000000
 mean 1 2.571429
 std 0 1.092372
 min 1 1.000000
 25% 1 2.000000
 50% 1 3.000000
 75% 1 3.000000
 max 1 4.000000

<class 'pandas.core.frame.DataFrame'>
Int64Index: 108 entries, 0 to 107
Data columns (total 3 columns):
resturl 108 non-null values
eliteStatus 108 non-null values
reviewRating 108 non-null values
dtypes: int64(2), object(1)
 eliteStatus reviewRating
eliteStatus
0 count 73 73.000000
 mean 0 2.890411
 std 0 1.161436
 min 0 1.000000
 25% 0 2.000000
 50% 0 3.000000
 75% 0 4.000000
 max 0 5.000000
1 count 35 35.000000

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

49

 mean 1 2.571429
 std 0 1.092372
 min 1 1.000000
 25% 1 2.000000
 50% 1 3.000000
 75% 1 3.000000
 max 1 4.000000

Appendix 8

Appendix 9

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

50

Appendix 10

Appendix 11

Practical Data Science James Hu
Final Project Miller Ke
Group 13 Jung Lee

51

Appendix 12

