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Exploring Yelp’s Treasure Trove of Data 
 

INTRODUCTION 

 

Yelp is a massive data aggregator of restaurant data. Founded in 2004, it now has an estimated 

117 million monthly unique visitors, with over 47 million reviews of local businesses. They’re 

also a major community, doing events for their community and fostering discussion within their 

forum. They’re well known for providing restaurant suggestions to users to find the latest and 

greatest restaurants. 

 

We selected Yelp based on their data feature-set of restaurant reviews and reviewers. Not only 

do they have a lot of restaurants, but they also have a lot of information that we can parse, 

with a very rich data set of many attributes of restaurants. In particular, we were interested in 

restaurants with reviews and the Yelp Elites, those in the Yelp community that possess the 

following traits: 

 

Authenticity: you are a real person and you keep things real 

Contribution: more reviews the better 

Connection: review other reviewers 

 

Does acquiring the Elite status have an impact on how Yelpers rate restaurants?  Is there a 

measurable difference in ratings between the Yelp Elite and the general audience?  Is one a 

better predictor of a restaurant’s overall rating? 

 

In addition to comparing the different types of users on Yelp, we wanted to get an 

understanding of what Yelp’s data tells about restaurants in general in NYC.  Do some 

restaurants possess certain attributes that indicate their ratings?  Can restaurateurs take action 

on Yelp to possibly drive higher ratings?  

 

DATA CAPTURE AND PROCESSING 

 

So while Yelp has a lot of data, most of the data was locked in the site itself. Yelp provides its 

own API, which has some data, but it is extraordinarily limited compared to the data on the site. 

It only provides snippets of the first 3 reviews, deal information, coordinate information and 

overall rating. The information is incredibly limited from the API, so the decision was made to 

develop a scraper to traverse their site. 
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Unfortunately as found out later, this is technically against Yelp’s Terms of Service. There was 

also information found that indicated that Yelp very aggressively pursued scrapers and IP 

banned them, so that forced us to be relatively careful, and would limit the extent of how much 

data we could reasonably and reliably scrape. 

 

This was done using python with Beautifulsoup and urllib2. Beautifulsoup is a powerful python 

library that can analyze HTML and parse certain tags and their information with ease. urllib2 

was used to open the sites for processing of the data, so Beautifulsoup could then strip it down 

the  the essential data. 

 

To store this data, it was decided to use csv file format. CSV is a relatively easy to use, easy to 

transport and easy to set up data source. While it does lack the power of a more powerful 

database like SQL, the data is easier to setup, easier to manipulate, and easier to transfer 

between the group. 

 

Our idea to scrape through the site was to go to a search page, process that search page and 

get all the restaurants, process all the restaurants, then go to the next page, and continue until 

all the data was processed. 

 

So first we had to quantify how we would scrape through the site. Initially we looked at doing a 

blanket search for restaurant in Manhattan, but there was an issue. The maximum number of 

results that Yelp would show was only up to 1000 results. That size data set would be hard to 

analyze at a large scale and could prove to extremely bias our results to the best restaurants 

instead of across all of Manhattan. Given this limitation, a factor was found that could better 

limit the result sets. 

 

The neighborhood filter was able to strictly define and limit the amount of restaurants 

displayed to only those in that region. This would increase the number of restaurants by 

sectioning off locations, then processing all the locations. In the end this resulted in a total of 

around 8000 unique restaurant results. 

 

So to iterate through all of these, for loops were used, with this URL structure. 

 

searchurl = 

"http://www.yelp.com/search?find_desc=restaurants&start=" + 
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str(num*10) + "&l=p:NY:New_York:Manhattan:" + searchLocation 

 

So for example for Greenwich Village: 

 

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manha

ttan:Greenwich_Village 

 

Would give the first page of search results that are located within Greenwich Village. 

 

So then the loop would iterate through, the URL would search for restaurants, start at page 

num, and iterate through the list of neighborhoods (searchLocation). 

 

searchLocations = 

['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Cent

er','East_Harlem','East_Village','Financial_District','Flatiron',

'Gramercy','Greenwich_Village','Harlem','Hell\'s_Kitchen','Inwood

','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat

tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','

Midtown_West','Morningside_Heights','Murray_Hill','NoHo','Nolita'

,'Roosevelt_Island','SoHo','South_Street_Seaport','South_Village'

,'Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_

East_Side','Upper_West_Side','Washington_Heights','West_Village'] 

 

The list of searchLocations covers all of Manhattan. While the full list is slightly longer, including 

Theater District and Yorkville, these were completely inside the regions of Midtown West and 

Upper East Side respectively, so we deemed them redundant. 

 

Iterating through the search results, we would find the listings, and then go through each of the 

individual listings. The listings would be structured as “/biz/gotham-bar-and-grill-new-york” so 

we made sure to append yelp.com to it so it would process. 

 

"http://www.yelp.com" + listingurl 

 

This was then a restaurants yelp page, with all the standard information. 

 

Now that we had this, we used a standard page with multiple factors we wanted to look at to 

try and understand the coding sturcture: 

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:Greenwich_Village
http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:Greenwich_Village
http://www.yelp.com/biz/gotham-bar-and-grill-new-york
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http://www.yelp.com/biz/gotham-bar-and-grill-new-york 

 

Using this page and looking at the source code, multiple factors were identified and chosen to 

be added to the data collection. Conveniently enough, Yelp uses significant class and id 

variables which made it relatively easy for BeautifulSoup to iterate through and discover the 

information we needed. To confirm the variables available, we chose a wide variety of 

restaurant pages were checked to see if they had any other relevant information. With that, 

some new variables were discovered and added into our scraper. After that, code was written 

to take the information off the page. This information was then written to a row of a 

restaurants CSV. 

 

fr.writerow([resturl, title, latitude, longitude, rating, 

reviewCount, categories, photos, URL, neighborhood, menu, 

reservable, yelpDelivery, slides, sponsor, claim, eliteReviews, 

transit, hours, attire, creditCards, parking, price, groups, 

kids, reservations, deal, delivery, takeout, service, 

outdoorSeating, wifi, meals, bestNights, happyHour, alcohol, 

smoking, coatCheck, noise, goodForDancing, ambience, tv, caters, 

wheelchairAccessible]) 

 

Since reviews were also listed on a restaurants page, the reviews were parsed later in the code. 

The reviews segment was identified, common factors were pulled then it would be written to a 

reviews CSV. 

 

frev.writerow([resturl, eliteStatus, friendCount, reviewCount, 

userPhoto, reviewInfo, reviewRating, publish, description, 

reviewPix, reviewSeated, reviewDeal, reviewCheckIn, useful, 

funny, cool]) 

 

We chose not to parse all the reviews and just the reviews on the initial page. This was because 

the amount of time required to parse through every single page of reviews for every restaurant 

(including Ippudo with 5000+ reviews!), would be immense, and would make us a bigger target 

for IP ban. 

 

Given that, we focused on two locations and worked on parsing all the data. 

 

http://www.yelp.com/biz/gotham-bar-and-grill-new-york
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Debugging 

 

Our initial pass throughs worked, but there were some significant issues that had to be 

addressed before we could use the code reliably to scrape information off of Yelp’s site. 

 

Making sure viable restaurant data is acquired 

 

We made sure of this by running it on multiple restaurant pages and double checking the 

results. Many of the bugs were ironed out through strict checking with the data set. 

 

Preventing errors from significantly slowing down data collection 

 

Initially the plan was to run the code at once and parse all the information. This was eventually 

seen as unviable. Any coding error or internet connection drop would invariably crash the 

program which would then stop the data collection. To help mitigate this problem, the CSV files 

were subdivided into their neighborhood. 

 

filenamer = "yelpr_" + searchLocation + ".csv" 

filenamerev = "yelprev_" + searchLocation + ".csv" 

 

This then allowed for easier recovery if a crash happened and identification of stop locations, 

preventing one major error from potentially complicating or corrupting the data set. 

 

Preventing anomalies from stopping data collection 

 

This proved to be a significant part of initial runs. Occasionally anomalies would occur out of 

the blue due to semi-inconsistent pages or what seemed to be AB Testing strategies. 

 

One of the first ones encountered was a completely new Yelp style which was extremely 

frustrating to code through as the error message nor the page could indicate what was wrong. 

This is when one of the first AB Tests were identified. Instead of the same structure that Yelp 

restaurant pages normally used, it would occasionally become this: 
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This would then proceed to break and error the script. This was resolved with a try catch 

statement to identify what the page looked like and its characteristics, then a if statement was 

placed so that if an identifying characteristic of the alternate page was found, it would run the 

function again until it switched. The occurrence of the alternate site seemed to be 1 out of 50, 

so it was unreliable to find manually through the browser. 

 

Issues after this became significantly easier to debug as they were more immediately visible. 

 

The next issue that arose was occasionally a site with a rating, but no reviews would appear. 

This was because Yelp acquired Qype, which had many reviews in alternate languages but 

would not display. This was fixed through a check at the beginning of the script. 

 

Another issue very much tied to that was that Qype lacked certain data points that the script 

was searching for. This was resolved by using if statements and setting default values. 

 

The last issue was that there was another incidence of AB testing. Instead of a massive change, 

it would subtly change one of the classes my code was looking for into something else. 

Fortunately, the data would error instead of giving bad data, which made detection relatively 

simple. Using the try catch code again, it was relatively easy to identify the code that was 

different. This happened about 1 every 15 pages. 

 

Avoiding IP Ban 

 

This was perhaps the biggest issue that had to be dealt with. There were at least 4 IP bans from 

Yelp for scraping their site. 
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The data processing already took a significant amount of time, with each restaurant page 

scrape taking around 5 seconds, so I was under the impression that this would potentially give 

enough downtime to not receive an IP ban. I was mistaken. 

 

The first IP ban was rather sudden. After scraping for two hours, the script would throw an 

error and stop immediately. After researching, it seemed that Yelp aggressively protected their 

data against scraping. According to a Yelp employee, they even went as far as to completely 

ban Tor since users were disproportionately using Tor to scrape Yelp. 

 

In order to continue to collect data, I had to circumvent the IP Ban. A MAC Address clone was 

used to generate new IPs and continue scraping. 

 

 

Unfortunately this was found unsustainable too. Subsequently the script kept getting IP banned 

faster, in about 1 hour, resulting in data collection stoppage. In addition, the sustainability of 

constantly refreshing the IP was not guaranteed so a longer term solution had to be developed. 

 

Eventually, through the built in time module of Python, sleep states were implemented into the 

code. With the IPs still getting banned, the numbers had to be fairly high and were incremented 

up to 1 minute per search page, 10 minutes per neighborhood and on average 5 seconds wait 

per restaurant page. 

 

With this still not working, a proxy was attempted. 

 

import urllib2 

 

proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'}) 

opener = urllib2.build_opener() 

opener.addheaders = [('User-agent', 'Mozilla/5.0 (X11; Linux 

i686; rv:5.0) Gecko/20100101 Firefox/5.0')] 
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urllib2.install_opener(opener) 

 

While this script proved successful, when applied to Yelp, very often it would result in the home 

IP being used, or the proxy being denied on Yelp, so that was not a feasible solution. 

 

In the end though, this did help identify a key feature that was added to the code that made it 

possible to run for a long time. 

 

urllib2’s default user-agent was Python/urllib2, which was extremely easy to determine that 

most likely the user was trying to scrape the site. This was incremented to Firefox and Chrome 

also. While they lasted longer, the code was not able to perpetually run without getting IP 

banned. 

 

In the end, the most successful user-agent was IE9. 

 

opener.addheaders = [('User-agent', 'IE 9/Windows: Mozilla/5.0 

(compatible; MSIE 9.0; Windows NT 6.1; WOW64; Trident/5.0)')] 

 

This allowed the code to run for 20 straight hours scraping Yelp. This strategy allowed the 

information to be scraped to completion. 

 

Data Cleanup 

 

The data was now a little unformatted and split across the various neighborhoods. 

 

To merge the data, a script was written, concat.py, to merge all the data together. Simply it 

would read through the lines and output them to a new document. This resulted in a restaurant 

document with 10,000+ restaurants and 277,000+ reviews. 

 

Restaurant sample data: 

 

http://www.yelp.com/biz/pylos-new-york,Pylos,40.7260964,-

73.9841525,4.5,597,Greek,Has photos,pylosrestaurant.com,"['East 

Village', 'Alphabet City']",Has menu,None,None,None,None,None,Has 

Elites,"2 Ave. (F) 

1 Ave. (L) 

Astor Pl (4, 6, 6X)","Mon-Thu, Sun 5 pm - 12 am 
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Wed-Sun 11:30 am - 4 pm 

Fri-Sat 5 pm - 1 

am",Casual,Yes,Street,$$$,Yes,No,Yes,None,No,Yes,Yes,No,No,Dinner

,None,None,Beer & Wine 

Only,None,None,Average,None,Romantic,No,No,Yes 

 

Review sample data: 

 

http://www.yelp.com/biz/pylos-new-york,None,0,9,Has photo,"East 

Village, Manhattan, NY",5.0,2013-11-07,"A 

Boutique...restaurants.",None,None,None,None,1,0,0 

 

Then another script was written to sterilize the data, to make all the relevant binary into 

numbers instead of their values. Using input from team members, two scripts, rsterilization.py 

and revsterilization.py, were created and used to sterilize the data to a format that can easily 

be used in data manipulation programs such as Tableau etc. 

For the last step, the removal of duplicates, the decision was to allow Excel to do the 

processing. While it is possible to write a python script to manipulate the documents and 

remove duplicates, the overhead, time and difficulty to do so is excessive and there was little 

information on removing duplicates quickly. So the decision was made to use Excel to expedite 

the process. This then cut down the restaurants to 8,600+ and reviews to 220,000+. 

 

One additional step then taken was to remove restaurants with under 10 reviews. The data for 

restaurants with under 10 reviews was very questionable and was not nearly as accurate as it 

should be. Therefore another script, g10.py, was used to remove any restaurants with less than 

10 reviews. This reduced it down to 6,200+ results. 

 

VISUALIZING RESTAURANT FEATURES 

 

Histograms 

 

To get a sense of the data we were working with, we plotted a few histograms in Python, 

starting with ratings (see Visual 1 in Appendix).  What we see is somewhat of a normally 

distributed bell-curve, but with a longer left tail and a right-biased peak.  People tend to be 

more positive with their ratings overall but there is still some hating going, which anecdotally 

makes sense.  You really need to have a polarizing experience to want to rate a restaurant.  Yelp 
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has an additional variable with the Elite factor, which will be explored later on. 

 

Next, we plotted the frequency of restaurant’s price range.  Originally, we counted all 

restaurants in this plot, which showed a usually large amount of $$$$ restaurants.  As we dove 

deeper into the dataset, we discovered that there were hundreds of restaurants with only a 

single digit count of reviews, all around East and West Harlem, which were skewing our 

analysis. 

 

Yelp apparently allows users to calculate the price range for the restaurant, if the restaurant 

has not been “claimed” by the owner.  To offset this, we filtered out all restaurants that had 

less than 10 reviews for all future analysis.  Upon filtering the data, we saw again a fairly 

normally distributed histogram of restaurants by price range, with the majority of restaurants in 

the $$ category (see Visual 2 in Appendix). 

 

Identifying Significant Variables 

 

We began our analysis with ratings as the target variable and price range as the initial 

independent variable.  But we quickly came to the conclusion that a restaurant’s price range 

does not necessary drive ratings (see Visual 3 in Appendix).  The original hypothesis arose from 

the notion of confirmation bias - in order to justify spending more money for an expensive 

restaurant, Yelpers would tend to rate expensive restaurants higher.  While we do see that the 

more expensive restaurants have slightly higher average ratings, they were not statistically 

significant. 

 

To find additional relationships within Yelp’s data, we looked for other features that were 

strongly correlated to ratings.  We ran a few linear regression models in Python and Minitab to 

identify variables that showed stronger correlations and offer us some better visuals.  Out of 

the approximately 40 features for restaurants, we found three - the total count of reviews for 

each restaurant, whether or not a restaurant’s Yelp page was claimed by the restaurateur and 

whether or not the restaurant offered deals. 

 

Boxplots 

 

To look at the relationship between ratings and the count of reviews, we plotted a few boxplots 

in Minitab and Python. 
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The average count of reviews that a restaurant has is around 140.  And as you can see from the 

boxplot above, the number of reviews is fairly consistent across all ratings levels.  However, a 

greater number of restaurants with higher ratings have extreme review counts, peaking at 4.  

Ippudo (a ramen restaurant) ranked first in the count of reviews at 5,381.  The extreme review 

counts are from destination restaurants like Katz Deli and Shake Shack.  But it mirrors the 

overall distribution of rating seen in the histogram. 

 

Looking at the boxplot comparing ratings for restaurants that have been claimed by the owner 

and restaurants that have not been claimed, we see claimed restaurants have an overall tighter 

range in the ratings they receive with a slightly higher average.  Claimed restaurants also have a 

greater number of outliers. 
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Finally, looking at the boxplot of restaurants that offer deals vs. those that do not below, we 

see a similar distribution of no deals to no claims, with a broad range of ratings and a average 

of 3.5.  However, restaurants that offer deals appear have a narrower band of opinion driving a 

slightly lower rating with a large number of outliers on both sides.  Further analysis would be 

required to identify trends in both the positive and negative outliers. 
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One of the variables we were interested in was whether or not higher rated restaurants were 

more heavily clustered around certain locations.  Does the location make the restaurant or will 

people flock to wherever a good restaurant resides? 

 

Given the cost of leasing space in New York City, neighborhoods most likely have significant 

biases in terms of pricing and awareness that draws certain types of people.  This is probably 

one of the reasons why you won’t find many ramen joints around Columbus Circle or 

Tribeca.  But you will find plenty down in the East Village. 

 

Using Tableau, we created heatmaps to plot out the location of restaurants using their geo-

coordinates captured from the Yelp data-scrape and compared the distribution of restaurants 

by ratings, price, review count and Yelp page claimage. 

 

Ratings vs. Price 

 

We realized that for restaurant ratings, the 1 - 5 scale did not offer a lot of depth for us to 

create a refined heatmap.  What we saw was a blurry distributed blob of restaurants (see Visual 

4 in Appendix).   

 

We then created small multiples of the heatmap by the price category (see Visual 5 in 

Appendix).  We saw a similar representation of the distribution of restaurants in the histogram 

of price above where the majority of restaurants fell into the $$ category. 

 

Review Count vs. Rating 

 

Since review count was significantly correlated to ratings, and because it had a greater range of 

data, we plotted that against rating.  This heatmap shows that restaurants with a 3.5 | 4 garner 

the greatest number of reviews. 
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Review Count vs. Claims and Deals 

 

Finally, we looked at a few heatmaps that compared restaurants Claims and Deals status to 

explore the distribution of review counts on a map.   

 

 
 

As we already saw in the boxplots, we see more activity and higher ratings for restaurants that 

have been claimed.  But we see less activity and lower ratings for restaurants that offer deals.  

The former could be due to the restaurant owners’ commitment to their establishment and 

customers which ultimately manifests in Yelp’s user ratings.  The latter could suggest that 

restaurants that are not doing well in general are more likely to offer deals in a desperate 

attempt to capture more customers.   

 

                 Not claimed                                  Claimed 
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YELP ELITES 

 

Our second area of insight we looked into was the potential relationship between Elite Status 

review ratings, Non-Elite Status review ratings, average review ratings, and other user criteria. 

The original impression we had was that Elite Status Yelpers were considered to be foodies and 

would thus judge food more critically. Non-Elite Status Yelpers were considered to be voluntary 

reviewers that had a polarizing experience at the restaurant. Thus, we believed that Elite Status 

Yelp review ratings would more accurately represent the average rating of the restaurant.  

 

Obtaining Ratings 

 

After collecting the data from Yelp we needed a method to easily analyze the data. We decided 

on using the pandas library to do the analysis. The pandas library allowed us to easily import 

the data into a DataFrame and call the .describe method to give us relevant statistical 

information. We primarily decided to look at the mean rather than the median since the 

presence of integer values trivialized the importance of the median. In addition we decided to 

plot our data using side by side box and whisker plots based on Elite Status in order to easily 

compare the distribution between the two groups.  

 

Aggregate and Group Ratings 

 

There were a total of 48,853 entries under Elite Status and 115,915 entries under Non-Elite 

Status. The mean review rating for Elite Status was 3.454273 with a standard deviation of 

1.295525 and the mean review rating for Non-Elite Status was 3.475795 with a standard 

                 No Deals                                  Deals Offered 
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deviation of 1.003664. In addition, the average review rating is 3.460654 with a standard 

deviation of 1.216352 . We expected the average rating to be closer to 3.0, but this was not the 

case.  

 

Aggregate Rating Interpretation 

 

Looking at the difference between the number of Elite Status entries and Non-Elite Status 

entries did not surprise us. We knew that the Elite Status was supposed to carry some prestige 

and that there would likely be more Non-Elite Status reviews. The average aggregate review 

rating of 3.460654 is interesting due to its distance from 3.0. On the Yelp review scale from 1-5 

one would naturally assumed that the average should be 3.0. A higher value has many 

implications. One conclusion may be that the restaurants being reviewed are simply on average 

better than the norm. New York City being a renowned location for food does not put this out 

of the realm of possibility, however without data about other regions it is difficult to validate 

this conclusion. Another conclusion may be that consumers tend to post reviews if they are 

satisfied with the restaurant. This promotes the idea of the obvious volunteer bias when 

looking at reviews. However, it suggests that there is a skew towards positive experiences 

rather than negative experiences. The standard deviations being close to 1 show that the 

distribution of ratings adheres in some capacity to the 1-5 scale. This means that the mean 

review rating is not arrived at through a combination of 1s and 5s. Rather it suggests a rough 

bell distribution centered around 3.460654.  

 

Group Ratings Interpretation 

 

The staggering similarity between the group ratings lead us to believe that there is little 

difference between Elite Status Yelper reviews and Non-Elite Status Yelper reviews. A box and 

whisker plot shows that the overlap between the two is very apparent 6. Our original belief that 

Non-Elite Status Yelpers had relatively more polarizing views turned out to be incorrect since 

the standard deviation is lower than that of Elite Status Yelpers. This suggests that there is less 

variance in Non-Elite Status Yelp reviews. The similarity between these two pools of users 

pointed us in the direction that the distinguishing factor between them was simply quantity. If 

Non-Elite Status Yelpers match Elite Status Yelpers in their reviews, then the only difference 

between the two are the number of reviews they have written. Rather than thinking about it as 

Elite vs. Non-Elite it is more of an analysis into all of the review ratings on Yelp. A new user on 

Yelp will on average arrive at the same rating for a restaurant that a seasoned user will. This is 

important because it detracted from the notion that Elite users were foodies. In fact, users who 
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post reviews on Yelp are more homogenous than we had originally thought.  

 

Dealing with Bias and Relevancy 

 

There are a few significant instances of bias in our data’s collection and processing. We opted 

not to scrape every review for a restaurant and capped the reviews for a given restaurant at 40. 

This took the most recent 40 ratings, which means that the data may fail to capture changes in 

management or policy. This sampling is not random and adds some bias to our method in 

collecting data. The issue of volunteer bias is also ever present in reviews as people only tend to 

write a review if they had a significant enough of an experience to care about. There is no real 

way around this and we accept that the conclusions we draw are formed around Yelp’s 

voluntary user base.  

  

The issue of relevancy is also difficult to address due to the scope of the data. By processing the 

data in an aggregate capacity we ignore what restaurants the reviews came from and instead 

are looking at a review of the overall quality of restaurants in Manhattan. We can instead opt to 

randomly sample restaurants that have a significant amount of Elite vs. Non-Elite reviews in 

order to gain a better picture of the difference between these two groups. This method is also 

prone to bias, since restaurants that have enough reviews to constitute being used are likely 

going to be popular. Rarely are there any poor quality restaurants with a high amount of 

reviews. Thus, our conclusions drawn are only relevant to the single restaurant in question. 

 

Comparing Reviews for a Single Restaurant 

 

After understanding how broad the scope was of our previous analysis, we decided to analyze a 

single restaurant in order to preserve the same topic of review between an Elite and Non-Elite 

review. Our randomly selected restaurant needed to have a significant amount of both Elite and 

Non-Elite reviews. We ended up arriving at Silom, a Thai restaurant in Chelsea. The restaurant 

had 35 Elite reviews and 73 Non-Elite reviews. The average review rating for the restaurant was 

2.805556. The average Elite review rating was 2.571429 with a standard deviation of 1.092372. 

The average Non-Elite review rating was 2.890411 with a standard deviation of 1.161436. 

Immediately we see there is a significant difference between the two group ratings. The box 

and whisker plot7 shows us that distribution of values for the two groups vary drastically. The 

lower average rating from Elite reviewers coincides with our original belief in a more critical 

group of users. On the other hand, the Non-Elite reviewers found Silom to be slightly better. 

Interestingly enough we saw that there we no ratings of 5 from Elite reviewers for Silom.  
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Further Improvements and Goals 

 

The results from Silom are only an example of a single instance. While we cannot draw any 

broad conclusions from it, the groundwork is laid for a more expansive forage into the Yelp 

data. In order to better judge if there is a significant difference between Elite and Non-Elite 

reviewers, we would expand the data scraping to encapsulate more than 40 reviews. 

Furthermore, we would only select restaurants that had n>30 for both Elite and Non-Elite 

reviews. From here we could look at the difference between the two group’s reviews relative to 

the average restaurant rating. Conducting a hypothesis test to test whether or not there is a 

significant difference between the two average ratings would then most accurately answer our 

question.  

 

We could also combine both of our insights and investigate the relevance of location and rating. 

The location of a restaurant is extremely important, since Yelp users tend to review restaurants 

that are easily accessible to them. Thus, an additional layer of bias arises due to a non-random 

selection of Yelp users reviewing the restaurant. This relates to the possibility of restaurants in 

certain areas may be more heavily reviewed by Elite users due to the demographic of the 

location. Looking at the crossover between location and user demographic could lead to 

interesting insights about the relationship between a restaurants rating and its area. There is 

also the idea that Elite users may be bias towards reviewing higher quality restaurants. We 

could investigate this by looking at the distribution of the amount of Elite reviews against the 

average rating of the restaurants. 

 

Predicting User Status 

 

We also decided to see if there were any correlations between user review qualities and user 

status. By looking at if pictures were taken, the user checked-in, and how useful, funny, or cool 

the review was we attempted to predict if the user was an Elite. The first criteria we looked at 

was whether or not the user incorporated pictures in their review8. We saw that on average, an 

Elite user submitted 0.458672 pictures with their review while a Non-Elite user only submitted 

0.163200 pictures. While the standard variation is extremely high relative to the averages, this 

is understandable due to reviewers usually taking many pictures should they decide to do so. 

The same was true for check-ins as well. Elite users tended to check-in at every 0.460614 

locations they reviewed. On the other hand, Non-Elite users only checked-in at 0.176531 

locations they reviewed. While the standard deviations were high again due to checking-in 

being a binary value, it showed us that Elite users were more prone to checking in over Non-

Elite users.  
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We also found that reviews marked as useful, funny, or cool had a higher tendency to be from 

an Elite user. In all categories, an Elite user’s review on average had higher points. Elite users on 

average had 1.645850 useful points, 0.860063 funny points, and 0.965838 cool points per 

review. Non-Elite users on average had 1.013697 useful points, 0.443200 funny points, and 

0.449872 cool points. The standard deviation values for each category were very high at 

2.746813 for useful, 2.295888 for funny, and 2.156238 for cool for Elite users and 2.298212 for 

useful, 1.517773 for funny, and 1.671170 for cool for Non-Elite users. This again suggests a 

polarizing effect where reviews are considered very useful, funny, or cool or not at all.  

 

Predicting Rating via Review Qualities 

 

 The last information we looked at was whether or not there was correlation between 

the characteristics of a review and the rating given9. We first looked at average rating vs. 

average review pictures taken. The scatterplot shows a nice positive linear trend between the 

two criteria10. This suggests that as average rating increases, average review pictures taken 

increases as well. The next comparison we looked at was average rating vs. average check-in 

rate11. This presented a bell-curve which led us to two possible conclusions. One was that the 

relation between the two followed a bell-curve. The other was that there is no relation since 

with only 5 points to look at it is possible the points are simply random. Finally, we looked at 

average ratings v. total useful/funny/cool ratings. The scatterplot looked like an inverse bell-

curve12. We followed the same conclusions from our previous comparison in that it was difficult 

to say if the relationship followed a true inverse bell-curve or was just random. 

 

WHAT THIS MEANS FOR YELP 

 

So given this data we’ve received, we can make some conclusions and perhaps suggest Yelp 

down a path. 

 

A significant finding is that it seems like there are strategies that restaurants can use to increase 

their ratings, with some of the factors being important to the improvement of Yelp score. 

 

One factor of particular important that we noticed that the regressions showed that if the Yelp 

Restaurant has a deal, it is negatively correlated with their review rating. Part of Yelp's business 

is to provide these deals and redirect people to them, but perhaps it needs to be understood 

and perhaps tweaked so that restaurants can see real, positive results from using Yelp’s deal 

system, which would help improve Yelp revenue and usage. Given that restaurants with deals 
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are on average worse, doesn't help the average Yelp user's perception of the restaurant. 

 

We also believe from the statistics we found that perhaps at a larger scale at Yelp with 

proprietary data, there is an opportunity for Yelp to create a consulting type of business. They 

have the data necessary to potentially better mine out factors. Given our relatively limited data 

set (only New York City), and the data collection limitations we had, we still were able to find 

fairly significant data results that Yelp could use to help restaurants improve their score and 

thusly improve their restaurants. 
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APPENDIX 

 

http://www.yelp.com/search?find_desc=restaurants&start=0&l=p:NY:New_York:Manhattan:

Greenwich_Village 

 

 
 

http://www.yelp.com/biz/gotham-bar-and-grill-new-york 
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Code 

 

Yelp.py 

 
1. from bs4 import BeautifulSoup   
2. import urllib2   
3. import csv   
4. from pyparsing import Literal, quotedString, removeQuotes, delimitedList   
5. import time   
6. from random import randint   
7.    
8.    
9. # Scrape restaurant information   
10. def restscrape(resturl, filenamersc, filenamerevsc):   
11.    
12.     time.sleep(randint(2,8))   
13.     # Read the url   
14.     response = urllib2.urlopen(resturl)   
15.     soup = BeautifulSoup(response.read())   
16.     response.close()   
17.    
18.    
19.     # Check if it is rated   
20.     if soup.find(itemprop="ratingValue") == None:   
21.         return   
22.    
23.     # Anamoly   
24.     if soup.find(class_="container no-reviews") != None:   
25.         return   
26.    
27.     # Check if it is not the alternate version   
28.     if soup.find(id="mapbox") != None:   
29.         print "alt version"   
30.         restscrape(resturl, filenamersc, filenamerevsc)   
31.         return   
32.    
33.     # Check if it is not an alternate version   
34.     if soup.find(class_="friend-count miniOrange") == None:   
35.         print "alt version rev"   
36.         restscrape(resturl, filenamersc, filenamerevsc)   
37.         return   
38.    
39. #### ##    ## ########  #######     
40.  ##  ###   ## ##       ##     ##    
41.  ##  ####  ## ##       ##     ##    
42.  ##  ## ## ## ######   ##     ##    
43.  ##  ##  #### ##       ##     ##    
44.  ##  ##   ### ##       ##     ##    
45. #### ##    ## ##        #######     
46.    
47.     # Key Yelp information   
48.     title = soup.find(property="og:title").get("content").encode('utf-8')   
49.     latitude = soup.find(property="place:location:latitude").get("content")   
50.     longitude = soup.find(property="place:location:longitude").get("content")   
51.     rating = soup.find(itemprop="ratingValue").get("content")   
52.     reviewCount = soup.find(itemprop="reviewCount").get_text()   
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53.    
54.     if soup.find(id="cat_display") != None:   
55.         categories = soup.find(id="cat_display").get_text().strip()   
56.         categories = ' '.join(categories.split())   
57.     else:   
58.         categories = "None"   
59.    
60.     if soup.find(class_="photo-box-img")['src'] != "http://s3-

media1.ak.yelpcdn.com/assets/2/www/img/5f69f303f17c/default_avatars/business_medium_squ
are.png":   

61.         photos = "Has photos"   
62.     else:   
63.         photos = "None"   
64.    
65.     if soup.find(id="bizUrl") != None:   
66.          URL = soup.find(id="bizUrl").get_text().strip().encode('utf-8')   
67.     else:   
68.         URL = "None"   
69.    
70.     # Get Neighborhoods   
71.     # Particularly special code because it has to be stripped from javascript script   
72.     # automatically strip quotes from quoted strings   
73.     # quotedString matches single or double quotes   
74.     neighborhood = ""   
75.     quotedString.setParseAction(removeQuotes)   
76.    
77.     # define a pattern to extract the neighborhoods: entry   
78.     neighborhoodsSpec = Literal('\"neighborhoods\":') + '[' + delimitedList(quotedStrin

g)('neighborhoods') + ']'   
79.    
80.     for hoods in neighborhoodsSpec.searchString(soup):   
81.         neighborhood = str(hoods.neighborhoods)   
82.    
83.    
84.     # Yelp Interaction/Information   
85.     if soup.find(class_="yelp-menu") != None:   
86.         menu = "Has menu"   
87.     else:   
88.         menu = "None"   
89.    
90.     if soup.find(id="opentable-reservation-actions") != None:   
91.         reservable = "Reservable"   
92.     else:   
93.         reservable = "None"   
94.    
95.     if soup.find(class_="media-story offer-detail") != None:   
96.         deal = "Has deal"   
97.     else:   
98.         deal = "None"   
99.            
100.     if soup.find(id="delivery-address-form") != None:   
101.         yelpDelivery = "Delivery system"   
102.     else:   
103.         yelpDelivery = "None"           
104.    
105.     if soup.find(id="bizSlide") != None:   
106.         slides = "Has slides"   
107.     else:   
108.         slides = "None"   
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109.    
110.    
111.     # Restaurant status   
112.     if soup.find(id="bizSupporter") != None:   
113.         sponsor = "Sponsors"   
114.     else:   
115.         sponsor = "None"   
116.    
117.     if soup.find(id="bizClaim") != None:   
118.         claim = "Unclaimed"   
119.     else:   
120.         claim = "None"   
121.    
122.     if soup.find(style="color:#999999;") == None:   
123.         eliteReviews = "Has Elites"   
124.     else:   
125.         eliteReviews = "None"   
126.    
127.    
128.     # Restaurant attributes from attributes section   
129.     if soup.find(class_="attr-transit") != None:   
130.         transit = soup.find(class_="attr-transit").get_text().strip()   
131.     else:   
132.         transit = "None"   
133.    
134.     if soup.find(class_="attr-BusinessHours") != None:   
135.         hours = soup.find('dd', class_="attr-BusinessHours").get_text()   
136.     else:   
137.         hours = "None"   
138.    
139.     if soup.find(class_="attr-RestaurantsAttire") != None:   
140.         attire = soup.find('dd', class_="attr-RestaurantsAttire").get_text()   
141.     else:   
142.         attire = "None"   
143.    
144.     if soup.find(class_="attr-BusinessAcceptsCreditCards") != None:   
145.         creditCards = soup.find('dd', class_="attr-

BusinessAcceptsCreditCards").get_text()   
146.     else:   
147.         creditCards = "None"   
148.    
149.     if soup.find(class_="attr-BusinessParking") != None:   
150.         parking = soup.find('dd', class_="attr-BusinessParking").get_text()   
151.     else:   
152.         parking = "None"   
153.    
154.     if soup.find(class_="attr-RestaurantsPriceRange2") != None:   
155.         price = soup.find('dd', class_="attr-

RestaurantsPriceRange2").get_text().strip()   
156.     else:   
157.         price = "None"   
158.    
159.     if soup.find(class_="attr-RestaurantsGoodForGroups") != None:   
160.         groups = soup.find('dd', class_="attr-RestaurantsGoodForGroups").get_text()   
161.     else:   
162.         groups = "None"   
163.    
164.     if soup.find(class_="attr-GoodForKids") != None:   
165.         kids = soup.find('dd', class_="attr-GoodForKids").get_text()   
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166.     else:   
167.         kids = "None"   
168.    
169.     if soup.find(class_="attr-RestaurantsReservations") != None:   
170.         reservations = soup.find('dd', class_="attr-

RestaurantsReservations").get_text()   
171.     else:   
172.         reservations = "None"   
173.    
174.     if soup.find(class_="attr-RestaurantsDelivery") != None:   
175.         delivery = soup.find('dd', class_="attr-RestaurantsDelivery").get_text()   
176.     else:   
177.         delivery = "None"   
178.    
179.     if soup.find(class_="attr-RestaurantsTakeOut") != None:   
180.         takeout = soup.find('dd', class_="attr-RestaurantsTakeOut").get_text()   
181.     else:   
182.         takeout = "None"   
183.    
184.     if soup.find(class_="attr-RestaurantsTableService") != None:   
185.         service = soup.find('dd', class_="attr-RestaurantsTableService").get_text()   
186.     else:   
187.         service = "None"   
188.    
189.     if soup.find(class_="attr-OutdoorSeating") != None:   
190.         outdoorSeating = soup.find('dd', class_="attr-OutdoorSeating").get_text()   
191.     else:   
192.         outdoorSeating = "None"   
193.    
194.     if soup.find(class_="attr-WiFi") != None:   
195.         wifi = soup.find('dd', class_="attr-WiFi").get_text()   
196.     else:   
197.         wifi = "None"   
198.    
199.     if soup.find(class_="attr-GoodForMeal") != None:   
200.         meals = soup.find('dd', class_="attr-GoodForMeal").get_text()   
201.     else:   
202.         meals = "None"   
203.    
204.     if soup.find(class_="attr-BestNights") != None:   
205.         bestNights = soup.find('dd', class_="attr-BestNights").get_text()   
206.     else:   
207.         bestNights = "None"   
208.    
209.     if soup.find(class_="attr-HappyHour") != None:   
210.         happyHour = soup.find('dd', class_="attr-HappyHour").get_text()   
211.     else:   
212.         happyHour = "None"   
213.    
214.     if soup.find(class_="attr-Alcohol") != None:   
215.         alcohol = soup.find('dd', class_="attr-Alcohol").get_text()   
216.     else:   
217.         alcohol = "None"   
218.    
219.     if soup.find(class_="attr-Smoking") != None:   
220.         smoking = soup.find('dd', class_="attr-Smoking").get_text()   
221.     else:   
222.         smoking = "None"   
223.    
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224.     if soup.find(class_="attr-CoatCheck") != None:   
225.         coatCheck = soup.find('dd', class_="attr-CoatCheck").get_text()   
226.     else:   
227.         coatCheck = "None"           
228.    
229.     if soup.find(class_="attr-NoiseLevel") != None:   
230.         noise = soup.find('dd', class_="attr-NoiseLevel").get_text()   
231.     else:   
232.         noise = "None"   
233.    
234.     if soup.find(class_="attr-GoodForDancing") != None:   
235.         goodForDancing = soup.find('dd', class_="attr-GoodForDancing").get_text()   
236.     else:   
237.         goodForDancing = "None"   
238.    
239.     if soup.find(class_="attr-Ambience") != None:   
240.         ambience = soup.find('dd', class_="attr-Ambience").get_text()   
241.     else:   
242.         ambience = "None"   
243.    
244.     if soup.find(class_="attr-HasTV") != None:   
245.         tv = soup.find('dd', class_="attr-HasTV").get_text()   
246.     else:   
247.         tv = "None"   
248.    
249.     if soup.find(class_="attr-Caters") != None:   
250.         caters = soup.find('dd', class_="attr-Caters").get_text()   
251.     else:   
252.         caters = "None"   
253.    
254.     if soup.find(class_="attr-WheelchairAccessible") != None:   
255.         wheelchairAccessible = soup.find('dd', class_="attr-

WheelchairAccessible").get_text()   
256.     else:   
257.         wheelchairAccessible = "None"   
258.    
259.     if soup.find(class_="attr-DogsAllowed") != None:   
260.         dogsAllowed = soup.find('dd', class_="attr-DogsAllowed").get_text()   
261.     else:   
262.         dogsAllowed = "None"   
263.    
264.    
265.     with open(filenamersc, "ab") as filer:   
266.         fr = csv.writer(filer)   
267.         # Writing to CSV   
268.         fr.writerow([resturl, title, latitude, longitude, rating, reviewCount, categori

es, photos, URL, neighborhood, menu, reservable, yelpDelivery, slides, sponsor, claim, 
eliteReviews, transit, hours, attire, creditCards, parking, price, groups, kids, reserv
ations, deal, delivery, takeout, service, outdoorSeating, wifi, meals, bestNights, happ
yHour, alcohol, smoking, coatCheck, noise, goodForDancing, ambience, tv, caters, wheelc
hairAccessible])   

269.    
270. ########  ######## ##     ## #### ######## ##      ##  ######     
271. ##     ## ##       ##     ##  ##  ##       ##  ##  ## ##    ##    
272. ##     ## ##       ##     ##  ##  ##       ##  ##  ## ##          
273. ########  ######   ##     ##  ##  ######   ##  ##  ##  ######     
274. ##   ##   ##        ##   ##   ##  ##       ##  ##  ##       ##    
275. ##    ##  ##         ## ##    ##  ##       ##  ##  ## ##    ##    
276. ##     ## ########    ###    #### ########  ###  ###   ######     



Practical Data Science  James Hu 
Final Project  Miller Ke 
Group 13  Jung Lee 
 

28 
 

277.    
278.     # Parsing top 40 Reviews   
279.     reviews = soup.findAll(itemprop="review")   
280.     for review in reviews:   
281.            
282.         # Get user data   
283.         if review.find(title="User is Elite") != None:   
284.             eliteStatus = "Elite"   
285.         else:   
286.             eliteStatus = "None"   
287.    
288.         friendCount = review.find(class_="friend-count miniOrange").get_text()[:-

8].strip()   
289.         reviewCount = review.find(class_="review-count miniOrange").get_text()[:-

8].strip()   
290.    
291.         if review.find(class_="photo-box-img")['src'] != "http://s3-

media4.ak.yelpcdn.com/assets/2/www/img/78074914700f/default_avatars/user_small_square.p
ng":   

292.             userPhoto = "Has photo"   
293.         else:   
294.             userPhoto = "None"   
295.    
296.         reviewInfo = review.find(class_="reviewer_info").get_text().encode('utf-8')   
297.    
298.    
299.         # Get review data   
300.         reviewRating = review.find(itemprop="ratingValue").get("content")   
301.         publish = review.find(itemprop="datePublished").get("content")   
302.         description = review.find(itemprop="description").get_text().encode('utf-8')   
303.    
304.    
305.         # Get review attributes   
306.         if review.find(class_="i-wrap ig-wrap-common i-camera-common-wrap badge photo-

count") != None:   
307.             reviewPix = review.find(class_="i-wrap ig-wrap-common i-camera-common-

wrap badge photo-count").get_text()[:-6].strip()   
308.         else:   
309.             reviewPix = "None"   
310.    
311.         if review.find(class_="i-wrap ig-wrap-common i-opentable-badge-common-

wrap badge opentable-badge-marker") != None:   
312.             reviewSeated = "Seated"   
313.         else:   
314.             reviewSeated = "None"   
315.    
316.         if review.find(class_="i ig-common i-deal-price-tag-common") != None:   
317.             reviewDeal = "Purchased Deal"   
318.         else:   
319.             reviewDeal = "None"   
320.    
321.         if review.find(class_="i-wrap ig-wrap-common i-checkin-burst-blue-small-common-

wrap badge checkin checkin-irregular") != None:   
322.             reviewCheckIn = review.find(class_="i-wrap ig-wrap-common i-checkin-burst-

blue-small-common-wrap badge checkin checkin-irregular").get_text()[:-14].strip()   
323.         else:   
324.             reviewCheckIn = "None"   
325.    
326.    
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327.         # Special Qype users lack stats   
328.         if review.find(class_="count"):   
329.             usefulfunnycool = review.findAll(class_="count")   
330.             # Get useful, funny, cool statistics   
331.             if usefulfunnycool[0].get_text() != "":   
332.                 useful = usefulfunnycool[0].get_text()   
333.             else:   
334.                 useful = 0   
335.    
336.             if usefulfunnycool[1].get_text() != "":   
337.                 funny = usefulfunnycool[1].get_text()   
338.             else:   
339.                 funny = 0   
340.    
341.             if usefulfunnycool[2].get_text() != "":   
342.                 cool = usefulfunnycool[2].get_text()   
343.             else:   
344.                 cool = 0   
345.         else:   
346.             useful = 0   
347.             funny = 0   
348.             cool = 0   
349.    
350.         with open(filenamerevsc, "ab") as filerev:   
351.             frev = csv.writer(filerev)   
352.             # Writing to CSV   
353.             frev.writerow([resturl, eliteStatus, friendCount, reviewCount, userPhoto, r

eviewInfo, reviewRating, publish, description, reviewPix, reviewSeated, reviewDeal, rev
iewCheckIn, useful, funny, cool])   

354.    
355. ##     ##    ###    #### ##    ##    
356. ###   ###   ## ##    ##  ###   ##    
357. #### ####  ##   ##   ##  ####  ##    
358. ## ### ## ##     ##  ##  ## ## ##    
359. ##     ## #########  ##  ##  ####    
360. ##     ## ##     ##  ##  ##   ###    
361. ##     ## ##     ## #### ##    ##    
362.    
363. # 'Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','Ea

st_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','He
ll\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat
tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morning
side_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Sea
port','South_Village','Stuyvesant_Town','Theater_District','TriBeCa','Two_Bridges','Uni
on_Square','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village', 'Yo
rkville'   

364.    
365. # 'Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','Ea

st_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','He
ll\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhat
tan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morning
side_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Sea
port','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_E
ast_Side','Upper_West_Side','Washington_Heights','West_Village'   

366.    
367. # Yorkville entirely encompassed by Upper East Side   
368. # Theater District entirely encompassed by Midtown West   
369.    
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370. # Unerrored:'Alphabet_City','Battery_Park','Civic_Center','East_Harlem','East_Village',
'Flatiron','Gramercy','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manhatta
n_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Morningsi
de_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Seapo
rt','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_Eas
t_Side','Upper_West_Side','Washington_Heights','West_Village'   

371. # Errored:'Chelsea','Chinatown','Financial_District','Greenwich_Village',   
372.    
373. # List all the locations   
374. searchLocations = ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center',

'East_Harlem','East_Village','Financial_District','Flatiron','Gramercy','Greenwich_Vill
age','Harlem','Hell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_E
ast_Side','Manhattan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midto
wn_West','Morningside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo',
'South_Street_Seaport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union
_Square','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village']   

375.    
376. # proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'})   
377. # opener = urllib2.build_opener(proxy)   
378. # opener.addheaders = [('User-

agent', 'Mozilla/5.0 (X11; Linux i686; rv:5.0) Gecko/20100101 Firefox/5.0')]   
379. # urllib2.install_opener(opener)   
380.    
381. opener = urllib2.build_opener()   
382. opener.addheaders = [('User-

agent', 'IE 9/Windows: Mozilla/5.0 (compatible; MSIE 9.0; Windows NT 6.1; WOW64; Triden
t/5.0)')]   

383. urllib2.install_opener(opener)   
384.    
385. # Iterate through   
386. for searchLocation in searchLocations:   
387.     # Print for reference   
388.     print searchLocation   
389.     filenamer = "yelpr_" + searchLocation + ".csv"   
390.     filenamerev = "yelprev_" + searchLocation + ".csv"   
391.    
392.     # File setup   
393.     with open(filenamer, "ab") as filer:   
394.         fr = csv.writer(filer)   
395.         # Write reference row   
396.         fr.writerow(['resturl', 'title', 'latitude', 'longitude', 'rating', 'reviewCoun

t', 'categories', 'photos', 'URL', 'neighborhood', 'menu', 'reservable', 'yelpDelivery'
, 'slides', 'sponsor', 'claim', 'eliteReviews', 'transit', 'hours', 'attire', 'creditCa
rds', 'parking', 'price', 'groups', 'kids', 'reservations', 'deal', 'delivery', 'takeou
t', 'service', 'outdoorSeating', 'wifi', 'meals', 'bestNights', 'happyHour', 'alcohol',
 'smoking', 'coatCheck', 'noise', 'goodForDancing', 'ambience', 'tv', 'caters', 'wheelc
hairAccessible'])   

397.    
398.     with open(filenamerev, "ab") as filerev:   
399.         frev = csv.writer(filerev)   
400.         # Write reference row   
401.         frev.writerow(['resturl', 'eliteStatus', 'friendCount', 'reviewCount', 'userPho

to', 'reviewInfo', 'reviewRating', 'publish', 'description', 'reviewPix', 'reviewSeated
', 'reviewDeal', 'reviewCheckIn', 'useful', 'funny', 'cool'])   

402.    
403.     # Build number to iterate search #   
404.     for num in range(0,100):   
405.    
406.         print num   
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407.         # Build URL   
408.         searchurl = "http://www.yelp.com/search?find_desc=restaurants&start=" + str(num

*10) + "&l=p:NY:New_York:Manhattan:" + searchLocation   
409.            
410.         # Read URL   
411.         responseMain = urllib2.urlopen(searchurl)   
412.         soupMain = BeautifulSoup(responseMain.read())   
413.         responseMain.close()   
414.    
415.         # If there are no more entries, break out of the loop and go to the next search

Location   
416.         if soupMain.find(class_="broaden-search-suggestions") != None:   
417.             break   
418.    
419.         # Otherwise get listings   
420.         listings = soupMain.find_all(class_="search-result natural-search-result biz-

listing-large")   
421.         listingurls = []   
422.    
423.         # Iterate through listings   
424.         for listing in listings:   
425.         
426.             # Check if no ratings   
427.             if listing.find(class_="biz-rating biz-rating-large clearfix") != None:   
428.                 # Pull the url if it has ratings and add to list   
429.                 listingurls.append(listing.find('a')['href'])   
430.    
431.         # Then get the url list   
432.         for listingurl in listingurls:   
433.                
434.             print listingurl   
435.             # Then use scrapers on the urls    
436.             restscrape(str("http://www.yelp.com" + listingurl), filenamer, filenamerev)

   
437.    
438.         time.sleep(60)   
439.    
440.     time.sleep(600)   

proxytest.py 

 
1. import urllib2   
2.    
3. # proxy = urllib2.ProxyHandler({'http': '173.213.113.111:8089'})   
4. opener = urllib2.build_opener()   
5. opener.addheaders = [('User-

agent', 'Mozilla/5.0 (X11; Linux i686; rv:5.0) Gecko/20100101 Firefox/5.0')]   
6. urllib2.install_opener(opener)   
7.    
8. my_ip = urllib2.urlopen('http://whatthehellismyip.com/?ipraw').read()   
9. my_ua = urllib2.urlopen('http://whatsmyua.com/').read()[750:900]   
10. print my_ip   
11. print my_ua   

Concat.py 

 
1. # ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_Harlem','E

ast_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','Harlem','H
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ell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Side','Manha
ttan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_West','Mornin
gside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South_Street_Se
aport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Square','Upper_
East_Side','Upper_West_Side','Washington_Heights','West_Village']   

2.    
3. locations = ['Alphabet_City','Battery_Park','Chelsea','Chinatown','Civic_Center','East_

Harlem','East_Village','Financial_District','Flatiron','Gramercy','Greenwich_Village','
Harlem','Hell\'s_Kitchen','Inwood','Kips_Bay','Koreatown','Little_Italy','Lower_East_Si
de','Manhattan_Valley','Marble_Hill','Meatpacking_District','Midtown_East','Midtown_Wes
t','Morningside_Heights','Murray_Hill','NoHo','Nolita','Roosevelt_Island','SoHo','South
_Street_Seaport','South_Village','Stuyvesant_Town','TriBeCa','Two_Bridges','Union_Squar
e','Upper_East_Side','Upper_West_Side','Washington_Heights','West_Village']   

4.    
5. frout=open("allr.csv","ab")   
6. frevout=open("allrev.csv","ab")   
7. # first file:   
8. for line in open("yelpr_"+locations[0]+".csv"):   
9.     frout.write(line)   
10.    
11. for line in open("yelprev_"+locations[0]+".csv"):   
12.     frevout.write(line)   
13.    
14. # now the rest:       
15. for num in range(1,len(locations)):   
16.    
17.     fr = open("yelpr_"+locations[num]+".csv")   
18.     fr.next() # skip the header   
19.     for line in fr:   
20.          frout.write(line)   
21.    
22.     fr.close()   
23.    
24.     frev = open("yelprev_"+locations[num]+".csv")   
25.     frev.next() # skip the header   
26.     for line in frev:   
27.          frevout.write(line)   
28.    
29.     frev.close()   
30.    
31. frout.close()   
32. frevout.close()   

rsterilization.py 

 
1. import csv   
2. inputFileName = "allr.csv"   
3. outputFileName = "allr_edited.csv"   
4.    
5. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:   
6.     r = csv.reader(infile)   
7.     w = csv.writer(outfile)   
8.     w.writerow(next(r))  # Writes the header unchanged   
9.     for row in r:   
10.         if row[7] == "None":   
11.             row[7] = 0   
12.         else:   
13.             row[7] = 1   
14.    
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15.         if row[8] == "None":   
16.             row[8] = 0   
17.         else:   
18.             row[8] = 1   
19.    
20.         if row[10] == "None":   
21.             row[10] = 0   
22.         else:   
23.             row[10] = 1   
24.    
25.         if row[11] == "None":   
26.             row[11] = 0   
27.         else:   
28.             row[11] = 1   
29.    
30.         if row[12] == "None":   
31.             row[12] = 0   
32.         else:   
33.             row[12] = 1   
34.            
35.         if row[13] == "None":   
36.             row[13] = 0   
37.         else:   
38.             row[13] = 1   
39.            
40.         if row[14] == "None":   
41.             row[14] = 0   
42.         else:   
43.             row[14] = 1   
44.            
45.         if row[15] == "None":   
46.             row[15] = 1   
47.         else:   
48.             row[15] = 0   
49.            
50.         if row[16] == "None":   
51.             row[16] = 0   
52.         else:   
53.             row[16] = 1   
54.    
55.         if row[17] == "None":   
56.             row[17] = 0   
57.         else:   
58.             row[17] = 1   
59.            
60.         if row[18] == "None":   
61.             row[18] = 0   
62.         else:   
63.             row[18] = 1   
64.    
65.         if row[19] == "Dressy":   
66.             row[19] = 1   
67.         else:   
68.             row[19] = 0   
69.    
70.         if row[20] == "Yes":   
71.             row[20] = 1   
72.         else:   
73.             row[20] = 0   



Practical Data Science  James Hu 
Final Project  Miller Ke 
Group 13  Jung Lee 
 

34 
 

74.    
75.         if row[21] == "None" or row[21] == "Street":   
76.             row[21] = 0   
77.         else:   
78.             row[21] = 1   
79.    
80.         row[22] = len(row[22].strip())   
81.    
82.         if row[23] == "Yes":   
83.             row[23] = 1   
84.         else:   
85.             row[23] = 0   
86.    
87.         if row[24] == "Yes":   
88.             row[24] = 1   
89.         else:   
90.             row[24] = 0   
91.    
92.         if row[25] == "Yes":   
93.             row[25] = 1   
94.         else:   
95.             row[25] = 0   
96.    
97.         if row[26] == "Has deal":   
98.             row[26] = 1   
99.         else:   
100.             row[26] = 0   
101.    
102.         if row[27] == "Yes":   
103.             row[27] = 1   
104.         else:   
105.             row[27] = 0   
106.    
107.         if row[28] == "Yes":   
108.             row[28] = 1   
109.         else:   
110.             row[28] = 0   
111.    
112.         if row[29] == "Yes":   
113.             row[29] = 1   
114.         else:   
115.             row[29] = 0   
116.    
117.         if row[30] == "Yes":   
118.             row[30] = 1   
119.         else:   
120.             row[30] = 0   
121.    
122.         if row[31] == "Free":   
123.             row[31] = 1   
124.         else:   
125.             row[31] = 0   
126.    
127.         if row[34] == "Yes":   
128.             row[34] = 1   
129.         else:   
130.             row[34] = 0   
131.            
132.         if row[35] == "Full Bar":   
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133.             row[35] = 2   
134.         elif row[35] == "Beer & Wine Only":   
135.             row[35] = 1   
136.         else:   
137.             row[35] = 0   
138.    
139.         if row[36] == "Yes":   
140.             row[36] = 2   
141.         elif row[36] == "Outdoor Area/ Patio Only":   
142.             row[36] = 1   
143.         else:   
144.             row[36] = 0   
145.    
146.         if row[37] == "Yes":   
147.             row[37] = 1   
148.         else:   
149.             row[37] = 0   
150.    
151.         if row[38] == "Very Loud" or row[38] == "Loud":   
152.             row[38] = 2   
153.         elif row[38] == "Average":   
154.             row[38] = 1   
155.         else:   
156.             row[38] = 0   
157.    
158.         if row[39] == "Yes":   
159.             row[39] = 1   
160.         else:   
161.             row[39] = 0   
162.    
163.         if row[41] == "Yes":   
164.             row[41] = 1   
165.         else:   
166.             row[41] = 0   
167.    
168.         if row[42] == "Yes":   
169.             row[42] = 1   
170.         else:   
171.             row[42] = 0   
172.    
173.         if row[43] == "Yes":   
174.             row[43] = 1   
175.         else:   
176.             row[43] = 0   
177.         w.writerow(row)   

revsterilization.py 

 
1. import csv   
2. inputFileName = "allrev.csv"   
3. outputFileName = "allrev_edited.csv"   
4.    
5. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:   
6.     r = csv.reader(infile)   
7.     w = csv.writer(outfile)   
8.     w.writerow(next(r))  # Writes the header unchanged   
9.     for row in r:   
10.         if row[1] == "Elite":   
11.             row[1] = 1   
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12.         else:   
13.             row[1] = 0   
14.    
15.         if row[4] == "None":   
16.             row[4] = 0   
17.         else:   
18.             row[4] = 1   
19.    
20.         if row[9] == "None":   
21.             row[9] = 0   
22.    
23.         if row[10] == "None":   
24.             row[10] = 0   
25.         else:   
26.             row[10] = 1   
27.    
28.         if row[11] == "None":   
29.             row[11] = 0   
30.         else:   
31.             row[11] = 1   
32.    
33.         if row[12] == "None":   
34.             row[12] = 0   
35.         else:   
36.             row[12] = 1   
37.                
38.         w.writerow(row)   

g10.py 

 
1. # To only keep restaurants with greater than 10 reviews.   
2. import csv   
3. inputFileName = "allr_edited_deduped.csv"   
4. outputFileName = "allr_edited_deduped_g10.csv"   
5.    
6. with open(inputFileName) as infile, open(outputFileName, "wb") as outfile:   
7.     r = csv.reader(infile)   
8.     w = csv.writer(outfile)   
9.     w.writerow(next(r))  # Writes the header unchanged   
10.     for row in r:   
11.         if int(row[5]) >= 10:   
12.             w.writerow(row)   

 

Jung iPython Notebook 

 
1. In [95]:   
2.    
3. #histogram of ratings   
4.    
5. %matplotlib inline   
6. import matplotlib.pyplot as plt   
7. import csv   
8.    
9. ratings_count = {"1": 0,   
10. "1.5": 0,   
11. "2": 0,   
12. "2.5": 0,   
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13. "3": 0,   
14. "3.5": 0,   
15. "4": 0,   
16. "4.5": 0,   
17. "5": 0}   
18.    
19. infile  = open('allr_edited_deduped_g10.csv', "rb")   
20. reader = csv.reader(infile)    
21.    
22. reader.next()   
23. for row in reader:   
24.     ratings = row[4]   
25.     ratings_count[ratings] = ratings_count[ratings] + 1   
26.    
27. infile.close()   
28.        
29. ratings_index = {"1": 0,   
30. "1.5": 1,   
31. "2": 2,   
32. "2.5": 3,   
33. "3": 4,   
34. "3.5": 5,   
35. "4": 6,   
36. "4.5": 7,   
37. "5": 8}   
38.    
39. ratings_arr = [0, 0, 0, 0, 0, 0, 0, 0, 0]   
40.    
41. keys = range(9)    
42. for key, value in ratings_count.iteritems():   
43.     index = ratings_index[key]   
44.     ratings_arr[index] = value   
45.    
46. plt.bar(keys,ratings_arr,color='b')   
47. plt.show()   
48.    
49. In [97]:   
50.    
51. #histogram of price   
52.    
53. price_count = {"1": 0,   
54. "2": 0,   
55. "3": 0,   
56. "4": 0}   
57.    
58. infile  = open('allr_edited_deduped_g10.csv', "rb")   
59. reader = csv.reader(infile)    
60.    
61. reader.next()   
62. for row in reader:   
63.     price = row[22]   
64.     price_count[price] = price_count[price] + 1   
65.    
66. infile.close()   
67.    
68. price_index = {"1": 0,   
69. "2": 1,   
70. "3": 2,   
71. "4": 3}   
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72.    
73. price_arr = [0, 0, 0, 0]   
74.    
75. keys = range(4)    
76. for key, value in price_count.iteritems():   
77.     index = price_index[key]   
78.     price_arr[index] = value   
79.    
80. plt.bar(keys,price_arr,color='r')   
81. plt.show()   
82.    
83. In [88]:   
84.    
85. #attempt at a cluster chart   
86.    
87. import csv   
88. import numpy as np   
89. from pylab import plot,show   
90. from numpy import vstack,array   
91. from numpy.random import rand   
92. from scipy.cluster.vq import kmeans,vq   
93.    
94. infile  = open('allr_edited_deduped.csv', "rb")   
95. reader = csv.reader(infile)    
96. #data = vstack((rand(150,2) + array([.5,.5]),rand(150,2)))   
97.    
98. ratings_list = []   
99. for row in reader:   
100.     ratings = int(float(row[4]))   
101.     price = int(float(row[22]))   
102.    
103.     ratings_list.append([ratings,price])   
104.     #p = np.asarray(ratings, price)   
105.    
106. p = vstack(ratings_list)   
107.    
108. # computing K-Means with K = 3 (3 clusters)   
109. centroids,_ = kmeans(p,3)   
110. # assign each sample to a cluster   
111. idx,_ = vq(p,centroids)   
112.    
113. # some plotting using numpy's logical indexing   
114. plot(p[idx==0,0],p[idx==0,1],'ob',   
115.      p[idx==1,0],p[idx==1,1],'or',   
116.      p[idx==2,0],p[idx==2,1],'og')   
117. plot(centroids[:,0],centroids[:,1],centroids[:,2],'sg',markersize=8)   
118. show()   
119.    
120. ---------------------------------------------------------------------------   
121. IndexError                                Traceback (most recent call last)   
122. <ipython-input-88-ae7c317bbd18> in <module>()   
123.      26    
124.      27 # some plotting using numpy's logical indexing   
125. ---> 28 plot(p[idx==0,0],p[idx==0,2],'ob',   
126.      29      p[idx==1,0],p[idx==1,2],'or',   
127.      30      p[idx==2,0],p[idx==2,2],'og')   
128.    
129. IndexError: index 2 is out of bounds for axis 1 with size 2   
130.    



Practical Data Science  James Hu 
Final Project  Miller Ke 
Group 13  Jung Lee 
 

39 
 

131. In [75]:   
132.    
133. #attempt at a boxplot   
134.    
135. from pylab import *   
136.    
137. # fake up some data   
138. spread= rand(50) * 100   
139. center = ones(25) * 50   
140. flier_high = rand(10) * 100 + 100   
141. flier_low = rand(10) * -100   
142. data =concatenate((spread, center, flier_high, flier_low), 0)   
143.    
144. print data   
145.    
146.    
147. # fake up some more data   
148. spread= rand(50) * 100   
149. center = ones(25) * 40   
150. flier_high = rand(10) * 100 + 100   
151. flier_low = rand(10) * -100   
152. d2 = concatenate( (spread, center, flier_high, flier_low), 0 )   
153. data.shape = (-1, 1)   
154. d2.shape = (-1, 1)   
155. #data = concatenate( (data, d2), 1 )   
156. # Making a 2-D array only works if all the columns are the   
157. # same length.  If they are not, then use a list instead.   
158. # This is actually more efficient because boxplot converts   
159. # a 2-D array into a list of vectors internally anyway.   
160. data = [data, d2, d2[::2,0]]   
161.    
162.    
163. # multiple box plots on one figure   
164. figure()   
165. boxplot(data)   
166.    
167. show()   
168.    
169. [  63.79546152   19.65157435   32.63003327   91.97750172   65.06890263   
170.    11.1174677    82.57265482   52.26190629   26.91672317   15.63198348   
171.    65.97502866   67.39583805   37.99084017    9.6420859    94.18799126   
172.    29.10139972   40.51556865    4.85790462    3.85263129   32.84172293   
173.    86.47713579    5.64763582   86.39398244   65.73331889   40.97693479   
174.    21.35507367   64.49553411   49.17026711   30.12449077    2.0095419   
175.    67.27264579   29.99458345   99.13562905   49.78354538    3.77188196   
176.    82.74870614   38.22563021   34.53909834   50.66782223   50.21074449   
177.    78.08356527   94.25060163   62.16788951   19.04474011   90.68360956   
178.    45.49576673    7.40531061   51.75721172   15.75123556   96.81151693   
179.    50.           50.           50.           50.           50.           50.   
180.    50.           50.           50.           50.           50.           50.   
181.    50.           50.           50.           50.           50.           50.   
182.    50.           50.           50.           50.           50.           50.   
183.    50.          114.23848175  137.16782724  149.83022405  129.36547062   
184.   102.91117314  158.70471456  131.81505752  113.28382836  137.40310604   
185.   148.56522517  -38.85887058  -72.52140826  -31.64348736   -6.45848084   
186.   -67.5212848   -25.16578098  -23.60681635  -92.05346249  -92.60459022   
187.   -15.02384999]   
188.    
189. In [107]:   
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190.    
191. #linear regression for review count   
192.    
193. from scipy import stats   
194.    
195. infile  = open('allr_edited_deduped_g10.csv', "rb")   
196. reader = csv.reader(infile)    
197.    
198. ratings_list = []   
199. reviews_list = []   
200. reader.next()   
201. for row in reader:   
202.     ratings = int(float(row[4]))   
203.     reviewcount = int(float(row[5]))   
204.    
205.     ratings_list.append(ratings)   
206.     reviews_list.append(reviewcount)   
207.    
208. slope, intercept, r_value, p_value, std_err = stats.linregress(reviews_list,ratings_lis

t)   
209.    
210. print "P-value", p_value #significant   
211. print "R-squared", r_value**2   
212. print "Slope", slope   
213.    
214. P-value 7.97070891518e-57   
215. R-squared 0.0397748655747   
216. Slope 0.00052694268763   
217.    
218. In [108]:   
219.    
220. #linear regression for price   
221.    
222. from scipy import stats   
223.    
224. infile  = open('allr_edited_deduped_g10.csv', "rb")   
225. reader = csv.reader(infile)    
226.    
227. ratings_list = []   
228. price_list = []   
229. reader.next()   
230. for row in reader:   
231.     ratings = int(float(row[4]))   
232.     price = int(float(row[22]))   
233.    
234.     ratings_list.append(ratings)   
235.     price_list.append(price)   
236.    
237. slope, intercept, r_value, p_value, std_err = stats.linregress(price_list,ratings_list)

   
238.    
239. print "P-value", p_value #significant   
240. print "R-squared", r_value**2   
241. print "Slope", slope   
242.    
243. P-value 3.55606573266e-12   
244. R-squared 0.00774710286578   
245. Slope 0.0689953657474   
246.    
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247. In [111]:   
248.    
249. #linear regression for claims   
250.    
251. from scipy import stats   
252.    
253. infile  = open('allr_edited_deduped_g10.csv', "rb")   
254. reader = csv.reader(infile)    
255.    
256. ratings_list = []   
257. claim_list = []   
258. reader.next()   
259. for row in reader:   
260.     ratings = int(float(row[4]))   
261.     claim = int(float(row[15]))   
262.    
263.     ratings_list.append(ratings)   
264.     claim_list.append(claim)   
265.    
266. slope, intercept, r_value, p_value, std_err = stats.linregress(claim_list,ratings_list)

   
267.    
268. print "P-value", p_value #significant   
269. print "R-squared", r_value**2   
270. print "Slope", slope   
271.    
272. P-value 7.19556603492e-33   
273. R-squared 0.0226739762926   
274. Slope 0.190908992096   
275.    
276. In [112]:   
277.    
278. #linear regression for deals   
279.    
280. from scipy import stats   
281.    
282. infile  = open('allr_edited_deduped_g10.csv', "rb")   
283. reader = csv.reader(infile)    
284.    
285. ratings_list = []   
286. deal_list = []   
287. reader.next()   
288. for row in reader:   
289.     ratings = int(float(row[4]))   
290.     deal = int(float(row[26]))   
291.    
292.     ratings_list.append(ratings)   
293.     deal_list.append(deal)   
294.    
295. slope, intercept, r_value, p_value, std_err = stats.linregress(deal_list,ratings_list) 

  
296.    
297. print "P-value", p_value #significant   
298. print "R-squared", r_value**2   
299. print "Slope", slope   
300.    
301. P-value 1.50657558112e-17   
302. R-squared 0.0116252818137   
303. Slope -0.147325808319   
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.ipynb file 

 

JungIPYNBWork.ipynb
 

 

yelpinsight.py 

 
1. import matplotlib.pyplot as plt   
2. import pandas as pd   
3.    
4. df=pd.read_csv('allrev_edited_deduped.csv', sep="[,\s]*")   
5. df   
6. g=df.describe()   
7. pd.set_option('display.max_columns',7)   
8. g   
9. print df   
10. print g.to_string()   
11. plt.figure();   
12. bp = df.boxplot(column=['funny'],by =['eliteStatus'])   
13. plt.show();   
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Visualizations 

 

Histogram of ratings distribution (Visual 1) 

 

 
 

Histogram of price range (Visual 2) 

 

 
 

Average ratings by price range (Visual 3) 
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Boxplot of ratings and price range 

 

 
 

Boxplot of review count and price 
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Heatmap of ratings (Visual 4) 

 

 
 

Heatmap of ratings by price range (Visual 5) 
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Heatmap File 

 

Heatmaps.twb
 

Appendix 6 

 

 
$ python insight4.py 
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<class 'pandas.core.frame.DataFrame'> 
Int64Index: 222268 entries, 0 to 222267 
Data columns (total 2 columns): 
eliteStatus     222268  non-null values 
reviewRating    222268  non-null values 
dtypes: int64(2) 
                   eliteStatus   reviewRating 
eliteStatus 
0           count       158425  158425.000000 
            mean             0       3.459309 
            std              0       1.296230 
            min              0       1.000000 
            25%              0       3.000000 
            50%              0       4.000000 
            75%              0       4.000000 
            max              0       5.000000 
1           count        63843   63843.000000 
            mean             1       3.485879 
            std              0       1.003300 
            min              1       1.000000 
            25%              1       3.000000 
            50%              1       4.000000 
            75%              1       4.000000 
            max              1       5.000000 

 
Appendix 7 
 

 
<class 'pandas.core.frame.DataFrame'> 
Int64Index: 108 entries, 0 to 107 
Data columns (total 3 columns): 
resturl         108  non-null values 
eliteStatus     108  non-null values 
reviewRating    108  non-null values 
dtypes: int64(2), object(1) 
                   eliteStatus  reviewRating 
eliteStatus 
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0           count           73     73.000000 
            mean             0      2.890411 
            std              0      1.161436 
            min              0      1.000000 
            25%              0      2.000000 
            50%              0      3.000000 
            75%              0      4.000000 
            max              0      5.000000 
1           count           35     35.000000 
            mean             1      2.571429 
            std              0      1.092372 
            min              1      1.000000 
            25%              1      2.000000 
            50%              1      3.000000 
            75%              1      3.000000 
            max              1      4.000000 
 
 
 

 
<class 'pandas.core.frame.DataFrame'> 
Int64Index: 108 entries, 0 to 107 
Data columns (total 3 columns): 
resturl         108  non-null values 
eliteStatus     108  non-null values 
reviewRating    108  non-null values 
dtypes: int64(2), object(1) 
                   eliteStatus  reviewRating 
eliteStatus 
0           count           73     73.000000 
            mean             0      2.890411 
            std              0      1.161436 
            min              0      1.000000 
            25%              0      2.000000 
            50%              0      3.000000 
            75%              0      4.000000 
            max              0      5.000000 
1           count           35     35.000000 
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            mean             1      2.571429 
            std              0      1.092372 
            min              1      1.000000 
            25%              1      2.000000 
            50%              1      3.000000 
            75%              1      3.000000 
            max              1      4.000000 
 
 
 
 
 

Appendix 8 
 

 
 
Appendix 9 
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Appendix 10 
 

 
 
Appendix 11 
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Appendix 12 
 

 
 
 


